|
|
Publications in Math-Net.Ru |
Citations |
|
2020 |
1. |
I. P. Volobuev, S. I. Keizerov, E. R. Rakhmetov, “Nonlinear radion interactions”, TMF, 205:1 (2020), 84–101 ; Theoret. and Math. Phys., 205:1 (2020), 1318–1332 |
1
|
|
2019 |
2. |
I. P. Volobuev, V. O. Egorov, “Quantum field theory description of processes passing at finite space and time intervals”, TMF, 199:1 (2019), 104–122 ; Theoret. and Math. Phys., 199:1 (2019), 562–576 |
6
|
|
2012 |
3. |
E. E. Boos, I. P. Volobuev, M. A. Perfilov, M. N. Smolyakov, “Searches for $W'$ and $Z'$ in models with large extra dimensions”, TMF, 170:1 (2012), 110–117 ; Theoret. and Math. Phys., 170:1 (2012), 90–96 |
9
|
|
2009 |
4. |
I. P. Volobuev, A. S. Mikhailov, Yu. S. Mikhailov, M. N. Smolyakov, “Gravity in the stabilized brane world model in the five-dimensional Brans–Dicke theory”, TMF, 161:1 (2009), 120–135 ; Theoret. and Math. Phys., 161:1 (2009), 1424–1437 |
3
|
|
2008 |
5. |
I. P. Volobuev, Yu. S. Mikhailov, M. N. Smolyakov, “Newtonian limit in the stabilized Randall–Sundrum model”, TMF, 156:2 (2008), 226–236 ; Theoret. and Math. Phys., 156:2 (2008), 1159–1168 |
1
|
|
2006 |
6. |
E. E. Boos, I. P. Volobuev, Yu. S. Mikhailov, M. N. Smolyakov, “Linearized gravity in the Randall–Sundrum model with stabilized
distance between branes”, TMF, 149:3 (2006), 339–353 ; Theoret. and Math. Phys., 149:3 (2006), 1591–1603 |
5
|
|
2004 |
7. |
I. P. Volobuev, M. N. Smolyakov, “Exact Solutions for Linearized Gravity in the Randall–Sundrum Model”, TMF, 139:1 (2004), 12–28 ; Theoret. and Math. Phys., 139:1 (2004), 458–472 |
7
|
|
2002 |
8. |
E. E. Boos, I. P. Volobuev, Yu. A. Kubyshin, M. N. Smolyakov, “Effective Lagrangians of the Randall–Sundrum Model”, TMF, 131:2 (2002), 216–230 ; Theoret. and Math. Phys., 131:2 (2002), 629–640 |
15
|
|
1998 |
9. |
I. P. Volobuev, V. O. Malyshenko, “Exact solutions of wormhole type in Einstein–Yang–Mills-systems with extra space-time dimensions”, Fundam. Prikl. Mat., 4:1 (1998), 233–244 |
|
1989 |
10. |
I. P. Volobuev, Yu. A. Kubyshin, Zh. M. Mourao, “Symmetric spaces and Higgs models in the method of dimensional reduction.
II. Theories with one multiplet of scalar fields”, TMF, 78:2 (1989), 267–280 ; Theoret. and Math. Phys., 78:2 (1989), 191–200 |
3
|
11. |
I. P. Volobuev, Yu. A. Kubyshin, Zh. M. Mourao, “Symmetric spaces and Higgs models in the method of dimensional reduction.
I. Potentials of the scalar fields of the reduced theory”, TMF, 78:1 (1989), 58–69 ; Theoret. and Math. Phys., 78:1 (1989), 41–49 |
3
|
|
1988 |
12. |
I. P. Volobuev, Yu. A. Kubyshin, “Spontaneous compactification from the point of view of dimensional reduction of gauge fields”, TMF, 75:2 (1988), 255–266 ; Theoret. and Math. Phys., 75:2 (1988), 509–517 |
3
|
|
1986 |
13. |
I. P. Volobuev, Yu. A. Kubyshin, “Higgs potentials as “inheritance” from higher space-time dimensions. II. Construction of Higgs models”, TMF, 68:3 (1986), 368–380 ; Theoret. and Math. Phys., 68:3 (1986), 885–893 |
22
|
14. |
I. P. Volobuev, Yu. A. Kubyshin, “Higgs potentials as “inheritance” from higher space-time dimensions I. Dimensional reduction and scalar fields”, TMF, 68:2 (1986), 225–235 ; Theoret. and Math. Phys., 68:2 (1986), 788–796 |
18
|
|
1985 |
15. |
I. P. Volobuev, G. Rudol'f, “Geometrical approach to the dimensional reduction of symmetric gauge fields”, TMF, 62:3 (1985), 388–399 ; Theoret. and Math. Phys., 62:3 (1985), 261–268 |
10
|
|
1982 |
16. |
I. P. Volobuev, “Lagrangians for rotationally symmetric gauge fields in a space of arbitrary dimension”, TMF, 50:2 (1982), 240–250 ; Theoret. and Math. Phys., 50:2 (1982), 157–164 |
1
|
|
1980 |
17. |
I. P. Volobuev, “Plane waves on a sphere and some applications”, TMF, 45:3 (1980), 421–426 ; Theoret. and Math. Phys., 45:3 (1980), 1119–1122 |
4
|
|
1979 |
18. |
I. P. Volobuev, V. G. Kadyshevskii, M. D. Mateev, R. M. Mir-Kassimov, “Equations of motion for scalar and spinor fields in a four-dimensional non-euclidean momentum space”, TMF, 40:3 (1979), 363–372 ; Theoret. and Math. Phys., 40:3 (1979), 800–807 |
17
|
|
1976 |
19. |
I. P. Volobuev, “On a consequence of the causality condition in field theory with a momentum space of constant curvature”, TMF, 28:3 (1976), 331–339 ; Theoret. and Math. Phys., 28:3 (1976), 822–828 |
1
|
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|