Abstract:
Equations of motion are obtained for a scalar and a spinor field in a four-dimensional non-Euclidean momentum space. They contain as a parameter a fundamental length $l$ and go over into the ordinary Klein–Gordon and Dirac equations in the limit $l\to0$. In the new formalism, an important part is played by the concept of a “vacuum momentum”, which is due to I. E. Tamm. The obtained equations remain invariant under spatial reflection only when the vacuum momentum is simultaneously transformed.
Citation:
I. P. Volobuev, V. G. Kadyshevskii, M. D. Mateev, R. M. Mir-Kassimov, “Equations of motion for scalar and spinor fields in a four-dimensional non-euclidean momentum space”, TMF, 40:3 (1979), 363–372; Theoret. and Math. Phys., 40:3 (1979), 800–807
\Bibitem{VolKadMat79}
\by I.~P.~Volobuev, V.~G.~Kadyshevskii, M.~D.~Mateev, R.~M.~Mir-Kassimov
\paper Equations of motion for scalar and spinor fields in a~four-dimensional non-euclidean momentum space
\jour TMF
\yr 1979
\vol 40
\issue 3
\pages 363--372
\mathnet{http://mi.mathnet.ru/tmf2920}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=549746}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 40
\issue 3
\pages 800--807
\crossref{https://doi.org/10.1007/BF01032066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JN17600006}
Linking options:
https://www.mathnet.ru/eng/tmf2920
https://www.mathnet.ru/eng/tmf/v40/i3/p363
This publication is cited in the following 17 articles:
Vladislav G. Kupriyanov, Alexey A. Sharapov, Richard J. Szabo, “Symplectic groupoids and Poisson electrodynamics”, J. High Energ. Phys., 2024:3 (2024)
Vladislav Kupriyanov, Maxim Kurkov, Alexey Sharapov, “Classical mechanics in noncommutative spaces: confinement and more”, Eur. Phys. J. C, 84:10 (2024)
Ahmed Farag Ali, Barun Majumder, Prabir Rudra, “Lorentz and gauge invariance of quantum space”, Int. J. Mod. Phys. A, 38:18n19 (2023)
Michele Arzano, Jerzy Kowalski-Glikman, Lecture Notes in Physics, 986, Deformations of Spacetime Symmetries, 2021, 3
Nikodem Popławski, “Noncommutative Momentum and Torsional Regularization”, Found Phys, 50:9 (2020), 900
V. N. Rodionov, A. M. Mandel, G. A. Kravtsova, “Restriction of the fermion mass spectrum in $PT$-symmetric systems and its implications for studying dark matter”, Theoret. and Math. Phys., 198:3 (2019), 412–424
Rodionov V.N. Kravtsova G.A., “An algebraic PT-symmetric quantum theory with a maximal mass”, Phys. Part. Nuclei, 47:2 (2016), 135–156
Vasilij R.N. Galina K.A., “Non-Hermitian Quantum Theory With Maximal Mass”, 19Th International Seminar on High Energy Physics (Quarks-2016), Epj Web of Conferences, 125, ed. Andrianov V. Matveev V. Rubakov V. Kim V. Andrianov A. Fitkevich M., E D P Sciences, 2016, UNSP 05012
V. N. Rodionov, G. A. Kravtsova, “Developing a non-Hermitian algebraic theory with the $\gamma_5$-extension of mass”, Theoret. and Math. Phys., 182:1 (2015), 100–113
V. Ch. Zhukovskii, E. A. Stepanov, “Fermion mass generation and induced current in low-dimensional models with nontrivial topology”, Theoret. and Math. Phys., 182:2 (2015), 246–263
Jerzy Kowalski-Glikman, Proceedings of CST-MISC Joint Symposium on Particle Physics — from Spacetime Dynamics to Phenomenology —, 2015
V. N. Rodionov, G. A. Kravtsova, “The algebraic and geometric approaches to PJ-symmetric non-Hermitian relativistic quantum mechanics with maximal mass”, Moscow Univ. Phys., 69:3 (2014), 223
Zhukovsky V.Ch., Stepanov E.A., “Fermion MASS Generation via Kaluza-Klein Fermions Under the Influence of a Gauge Field Within a (2+1)-Dimensional Model”, Mosc. Univ. Phys. Bull., 67:2 (2012), 233–240
Zhukovskii V.Ch., Stepanov E.A., “Generatsii fermionnoi massy s uchastiem fermionov kalutsy-kleina pod vliyaniem kalibrovochnogo polya v modeli s 2+1 izmereniem”, Vestnik Moskovskogo universiteta. Seriya 3: Fizika. Astronomiya, 2012, no. 1, 58–64
Fermion mass generation with kaluza-klein fermions and under the influence of gauge field in the 2+1 dimensional model
Giovanni Amelino-Camelia, Laurent Freidel, Jerzy Kowalski-Glikman, Lee Smolin, “Principle of relative locality”, Phys. Rev. D, 84:8 (2011)
A. D. Donkov, V. G. Kadyshevskii, M. D. Mateev, “Non-Euclidean momentum space and the two-body problem”, Theoret. and Math. Phys., 50:3 (1982), 236–243
S. A. Gadzhiev, V. A. Petrosyan, “A quantum field theory in momentum space of constant curvature”, Soviet Physics Journal, 24:9 (1981), 796