Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 156, Number 2, Pages 226–236
DOI: https://doi.org/10.4213/tmf6243
(Mi tmf6243)
 

This article is cited in 1 scientific paper (total in 1 paper)

Newtonian limit in the stabilized Randall–Sundrum model

I. P. Volobueva, Yu. S. Mikhailovb, M. N. Smolyakova

a Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
b M. V. Lomonosov Moscow State University, Faculty of Physics
Full-text PDF (367 kB) Citations (1)
References:
Abstract: In the stabilized Randall–Sundrum model, we obtain and solve linearized equations of motion for gravitational and scalar fields in the case of matter on the brane. We find the Newtonian limit of an effective four-dimensional theory on branes with negative tension and explicitly isolate the radion field contribution.
Keywords: Kaluza–Klein theory, brane, radion stabilization, linearized gravity, Newtonian limit.
Received: 14.06.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 156, Issue 2, Pages 1159–1168
DOI: https://doi.org/10.1007/s11232-008-0086-8
Bibliographic databases:
Language: Russian
Citation: I. P. Volobuev, Yu. S. Mikhailov, M. N. Smolyakov, “Newtonian limit in the stabilized Randall–Sundrum model”, TMF, 156:2 (2008), 226–236; Theoret. and Math. Phys., 156:2 (2008), 1159–1168
Citation in format AMSBIB
\Bibitem{VolMikSmo08}
\by I.~P.~Volobuev, Yu.~S.~Mikhailov, M.~N.~Smolyakov
\paper Newtonian limit in the~stabilized Randall--Sundrum model
\jour TMF
\yr 2008
\vol 156
\issue 2
\pages 226--236
\mathnet{http://mi.mathnet.ru/tmf6243}
\crossref{https://doi.org/10.4213/tmf6243}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2490251}
\zmath{https://zbmath.org/?q=an:1153.83391}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...156.1159V}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 156
\issue 2
\pages 1159--1168
\crossref{https://doi.org/10.1007/s11232-008-0086-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259085400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549118762}
Linking options:
  • https://www.mathnet.ru/eng/tmf6243
  • https://doi.org/10.4213/tmf6243
  • https://www.mathnet.ru/eng/tmf/v156/i2/p226
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :222
    References:77
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024