Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Mirotin, Adolf Ruvimovich

Statistics Math-Net.Ru
Total publications: 47
Scientific articles: 47
Presentations: 8

Number of views:
This page:4044
Abstract pages:11584
Full texts:4004
References:1824
Professor
Doctor of physico-mathematical sciences (2001)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 5.05.1952
E-mail:
Keywords: topological group, topological semigroup, Lie semigroup, invariant measure, representation, semicharacter, Fourier transform, Laplace transform, Hilbert transform, Stieltjes transform, functional calculus, joint spectra, Banach algebra, Toeplitz operator, Hankel operator, semigroup of operators.
UDC: 517.986.7, 517.983.23, 517.986, 517, 519.53, 517.984.5, 517.984.3
MSC: 22D, 28A, 43-XX, 43A53, 47A60, 47D03, 43A05, 22A20

Subject:

Abstract Harmonic Analysis, Operator Theory.

Biography

Graduate from Gomel State University in 1974, post graduate course — Moscow State University (scientific adviser — professor E. A. Gorin), PhD — 1987, Voronezh, VSU; D.Sc. — 2001, Minsk, BSU. Director of department of mathematical analysis of Skoryna Gomel State University (Belarus).

   
Main publications:
  1. A. R. Mirotin, “Invariant Measure Semigroup Contains an Ideal which is Embeddeble in Groupе”, Semigroup Forum, 59:3 (1999), 354–361  mathscinet  zmath
  2. A. R. Mirotin, “Positive Semicharacters of Lie Semigroups”, Positivity, 3:1 (1999), 23–31  crossref  mathscinet  zmath
  3. A. R. Mirotin, “On the Extensions of Infinite-Dimensional Representations of Lie Semigroups”, Int. J. Math. Math. Sci., 29:4 (2002), 195–207  crossref  mathscinet  zmath
  4. A. R. Mirotin, “Criteria of Analyticity of Subordinate Semigroups”, Semigroup Forum, 78:2 (2009), 262–275  crossref
  5. A. R. Mirotin, “On the essensial spectrum of $\lambda$-Toeplitz operators over compact Abelian groups”, J. Math. Anal. Appl., 424:2 (2015), 1286–1295

https://www.mathnet.ru/eng/person19311
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2022
1. E. Yu. Kuzmenkova, A. R. Mirotin, “On normal $\mu$-Hankel operators”, Vladikavkaz. Mat. Zh., 24:1 (2022),  36–43  mathnet  mathscinet
2021
2. A. R. Mirotin, “Compact Hankel operators over compact Abelian groups”, Algebra i Analiz, 33:3 (2021),  191–212  mathnet; St. Petersburg Math. J., 33:3 (2022), 569–584
3. A. R. Mirotin, “The inversion of series of resolvents of a closed operator and some of its applications”, Mat. Tr., 24:2 (2021),  105–121  mathnet
2020
4. A. R. Mirotin, “Letter to the editors”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2020),  92  mathnet
5. A. R. Mirotin, “Hausdorff operators on homogeneous spaces of locally compact groups”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2020),  28–35  mathnet 1
6. A. R. Mirotin, I. S. Kovaleva, “Discrete-time systems with frequency response of the Markov–Stieltjes type”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 6,  36–47  mathnet; Russian Math. (Iz. VUZ), 64:6 (2020), 29–39  isi  scopus
7. A. R. Mirotin, “On connections between the Bochner–Phillips and Hille–Phillips functional calculi”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  118–132  mathnet  elib
2019
8. A. R. Mirotin, “On the stricture of normal Hausdorff operators on Lebesgue spaces”, Funktsional. Anal. i Prilozhen., 53:4 (2019),  27–37  mathnet  mathscinet 2
9. A. R. Mirotin, I. S. Kovaliova, “The Markov–Stieltjes transform of measures and discrete time systems”, PFMT, 2019, no. 1(38),  56–60  mathnet 1
10. A. R. Mirotin, A. A. Atvinovskii, “On multiplicative inversion for Wolff-Denjoy series”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  147–154  mathnet  elib 1
2017
11. A. R. Mirotin, “On some functional calculus of closed operators on Banach space. III. Some topics of perturbation theory”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 12,  24–34  mathnet; Russian Math. (Iz. VUZ), 61:12 (2017), 19–28  isi  scopus 5
12. A. R. Mirotin, “Corrections and Complements to My Paper “On a Class of Operator Monotone Functions of Several Variables””, Mat. Zametki, 101:6 (2017),  944–948  mathnet  mathscinet  elib; Math. Notes, 101:6 (2017), 1061–1065  isi  scopus 1
13. I. S. Kovalyova, A. R. Mirotin, “Generalized Markov–Stieltjes operator on Hardy and Lebesgue spaces”, Tr. Inst. Mat., 25:1 (2017),  39–50  mathnet 3
2016
14. A. R. Mirotin, A. A. Atvinovskii, “On some properties of a functional calculus of closed operators on Banach space”, PFMT, 2016, no. 4(29),  63–67  mathnet 2
15. A. R. Mirotin, E. Yu. Kuz'menkova, “On Hankel operators associated with linearly ordered abelian groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  201–214  mathnet  mathscinet  elib 1
2015
16. A. R. Mirotin, “On joint spectra of families of unbounded operators”, Izv. RAN. Ser. Mat., 79:6 (2015),  145–170  mathnet  mathscinet  elib; Izv. Math., 79:6 (2015), 1235–1259  isi  scopus 5
17. A. A. Atvinovskii, A. R. Mirotin, “On some functional calculus of closed operators in a Banach space. II”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 5,  3–16  mathnet; Russian Math. (Iz. VUZ), 59:5 (2015), 1–12  scopus 6
18. A. R. Mirotin, R. V. Dyba, “On finite dimensional and nuclear operators in Hardy spaces $H^2$ on compact Abelian groups”, PFMT, 2015, no. 4(25),  74–79  mathnet
2014
19. A. R. Mirotin, A. A. Atvinovskii, “Inversion of a linear combination of values of the resolvent of a closed operator”, PFMT, 2014, no. 3(20),  77–79  mathnet 4
20. R. V. Dyba, A. R. Mirotin, “Functions of bounded mean oscillation and Hankel operators on compact abelian groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  135–144  mathnet  mathscinet  elib 3
2013
21. A. A. Atvinovskii, A. R. Mirotin, “On some functional calculus of closed operators in a Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 10,  3–15  mathnet; Russian Math. (Iz. VUZ), 57:10 (2013), 1–12  scopus 7
22. A. R. Mirotin, “On a Class of Operator Monotone Functions of Several Variables”, Mat. Zametki, 94:1 (2013),  154–156  mathnet  mathscinet  zmath  elib; Math. Notes, 94:1 (2013), 160–163  isi  scopus 2
23. A. R. Mirotin, “Properties of Bernstein Functions of Several Complex Variables”, Mat. Zametki, 93:2 (2013),  216–226  mathnet  mathscinet  zmath  elib; Math. Notes, 93:2 (2013), 257–265  isi  elib  scopus 3
24. I. S. Kovaliova, A. R. Mirotin, “Convolution theorem for the Markov–Stieltjes transformation”, PFMT, 2013, no. 3(16),  66–70  mathnet 3
25. A. A. Atvinovskii, A. R. Mirotin, “The inverse of some class of operators in Banach space and its several applications”, PFMT, 2013, no. 3(16),  55–60  mathnet 5
26. A. R. Mirotin, “The Paley–Wiener–Gelfand tauberian theorem for semigroups with invariant measure”, Tr. Inst. Mat., 21:1 (2013),  88–97  mathnet
2012
27. A. R. Mirotin, “A Joint Spectral Mapping Theorem for Sets of Semigroup Generators”, Funktsional. Anal. i Prilozhen., 46:3 (2012),  62–70  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 46:3 (2012), 210–217  isi  elib  scopus 2
2011
28. A. R. Mirotin, “The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 3,  41–49  mathnet  mathscinet; Russian Math. (Iz. VUZ), 55:3 (2011), 36–43  scopus
29. A. R. Mirotin, M. A. Romanova, “On some characterization of Arens-Singer generalized analytic functions”, PFMT, 2011, no. 2(7),  65–68  mathnet
30. A. R. Mirotin, “Fredholm and spectral properties of Toeplitz operators on $H^p$ spaces over ordered groups”, Mat. Sb., 202:5 (2011),  101–116  mathnet  mathscinet  zmath  elib; Sb. Math., 202:5 (2011), 721–737  isi  scopus 12
31. A. R. Mirotin, “On some properties of the multidimensional Bochner–Phillips functional calculus”, Sibirsk. Mat. Zh., 52:6 (2011),  1300–1312  mathnet  mathscinet; Siberian Math. J., 52:6 (2011), 1032–1041  isi  scopus 11
2010
32. A. R. Mirotin, “Some assertions equivalent to Riemann hypothesis”, PFMT, 2010, no. 4(5),  29–34  mathnet
2009
33. A. R. Mirotin, “On multidimensional Bochner-Phillips functional calculus”, PFMT, 2009, no. 1(1),  60–63  mathnet 3
2007
34. A. R. Mirotin, M. A. Romanova, “Interpolation sets for the algebra of generalized analytic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 3,  51–59  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 51:3 (2007), 46–54 2
2002
35. A. R. Mirotin, “On some functions that map each generator of a $C_0$-semigroup into the generator of a holomorphic semigroup”, Sibirsk. Mat. Zh., 43:1 (2002),  144–154  mathnet  mathscinet  zmath; Siberian Math. J., 43:1 (2002), 114–123  isi 4
2000
36. A. R. Mirotin, “The Laplace transform and a noncommutative version of the Payley–Wiener theorem”, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 9,  16–20  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 44:9 (2000), 14–18
37. A. R. Mirotin, “Letter to the editors”, Sibirsk. Mat. Zh., 41:4 (2000),  960  mathnet  mathscinet  zmath; Siberian Math. J., 41:4 (2000), 800 2
1999
38. A. R. Mirotin, “The multidimensional $\mathscr T$-calculus of generators of $C_0$-semigroups”, Algebra i Analiz, 11:2 (1999),  142–169  mathnet  mathscinet  zmath; St. Petersburg Math. J., 11:2 (2000), 315–335 14
1998
39. A. R. Mirotin, “Functions from the Schoenberg class $\mathscr T$ act in the cone of dissipative elements of a Banach algebra. II”, Mat. Zametki, 64:3 (1998),  423–430  mathnet  mathscinet  zmath; Math. Notes, 64:3 (1998), 364–370  isi 8
40. A. R. Mirotin, “On the $\mathscr T$-calculus of generators of $C_0$-semigroups”, Sibirsk. Mat. Zh., 39:3 (1998),  571–582  mathnet  mathscinet  zmath; Siberian Math. J., 39:3 (1998), 493–503  isi 13
1997
41. A. R. Mirotin, “Functions from the Schoenberg class $\mathscr T$ on the cone of dissipative elements of a Banach algebra”, Mat. Zametki, 61:4 (1997),  630–633  mathnet  mathscinet  zmath; Math. Notes, 61:4 (1997), 524–527  isi 9
1995
42. A. R. Mirotin, “The Paley-Wiener theorem for cones in locally compact abelian groups”, Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 3,  35–44  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 39:3 (1995), 33–42 4
1988
43. A. R. Mirotin, “Invariant measures in commutative topological semigroups”, Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 3,  75–78  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 32:3 (1988), 109–112 1
1984
44. V. V. Mukhin, A. R. Mirotin, “Weil topology in a group with a measure invariant on a subset”, Sibirsk. Mat. Zh., 25:3 (1984),  132–136  mathnet  mathscinet  zmath; Siberian Math. J., 25:3 (1984), 447–451  isi
45. A. R. Mirotin, “Invariant measures in locally compact semigroups with open translations”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 4,  12–14  mathnet  mathscinet  zmath
1982
46. A. R. Mirotin, “The structure of invariant measures on locally compact semigroups with open translations”, Uspekhi Mat. Nauk, 37:1(223) (1982),  151–152  mathnet  mathscinet  zmath; Russian Math. Surveys, 37:1 (1982), 170–171  isi
1978
47. A. R. Mirotin, V. V. Mukhin, “Invariant measures, extended from a semigroup to the group of its quotients”, Mat. Zametki, 24:6 (1978),  819–828  mathnet  mathscinet  zmath; Math. Notes, 24:6 (1978), 934–938

Presentations in Math-Net.Ru
1. On a general concept of a Hausdorff-type operator
A. R. Mirotin
International Scientific Conference “Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis - 2024” (OTHA-2024)
August 27, 2024 10:30   
2. Criteria for analyticity of subordinate semigroups
A. R. Mirotin
International scientific workshop OTHA Fall 2023
December 18, 2023 14:20   
3. On a class of Hadamard-Bergman operators
S. M. Grudskii, A. N. Karapetyants, A. R. Mirotin
VI International Conference "Function Spaces. Differential Operators. Problems of Mathematical Education", dedicated to the centennial anniversary of the corresponding member of Russian Academy of Sciences, academician of European Academy of Sciences L.D. Kudryavtsev
November 16, 2023 10:55   
4. On the Gelfand spectrum of a measure algebra
A. R. Mirotin
International Scientific Conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis - 2023 (OTHA-2023)"
August 21, 2023 10:30   
5. On the spectra of discrete Hausdorff operators
A. R. Mirotin
International scientific workshop OTHA Fall 2022
December 19, 2022 11:10   
6. On $\mu$-Hankel operators
A. R. Mirotin
Modern methods, problems and applications of operator theory and harmonic analysis
August 22, 2022 10:30   
7. To the Spectral Theory of Hausdorff Operators
A. R. Mirotin
Seminar on Analysis, Differential Equations and Mathematical Physics
July 21, 2022 18:00
8. On some equations of the first kind
A. R. Mirotin
International scientific (offline) workshop OTHA Spring 2022
April 26, 2022 11:50   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024