Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 5, Pages 721–737
DOI: https://doi.org/10.1070/SM2011v202n05ABEH004163
(Mi sm7668)
 

This article is cited in 12 scientific papers (total in 12 papers)

Fredholm and spectral properties of Toeplitz operators on Hp spaces over ordered groups

A. R. Mirotin

Francisk Skorina Gomel State University
References:
Abstract: We consider Toeplitz operators on the spaces Hp(G), 1<p<, associated with a compact connected Abelian group G whose character group is ordered and, in the case of total order, prove a theorem on the Fredholm index for those operators which have continuous symbols which generalizes the classical Gohberg-Krein theorem. The results thus obtained are applied to the spectral theory of Toeplitz operators and examples where the index is evaluated explicitly are considered.
Bibliography: 22 titles.
Keywords: Toeplitz operator, Fredholm operator, Fredholm index, essential spectrum, ordered Abelian group.
Received: 15.12.2009 and 29.06.2010
Bibliographic databases:
Document Type: Article
UDC: 517.983.23+517.984.5
MSC: 43A15, 47B35
Language: English
Original paper language: Russian
Citation: A. R. Mirotin, “Fredholm and spectral properties of Toeplitz operators on Hp spaces over ordered groups”, Sb. Math., 202:5 (2011), 721–737
Citation in format AMSBIB
\Bibitem{Mir11}
\by A.~R.~Mirotin
\paper Fredholm and spectral properties of Toeplitz operators on $H^p$ spaces over ordered groups
\jour Sb. Math.
\yr 2011
\vol 202
\issue 5
\pages 721--737
\mathnet{http://mi.mathnet.ru/eng/sm7668}
\crossref{https://doi.org/10.1070/SM2011v202n05ABEH004163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841520}
\zmath{https://zbmath.org/?q=an:1228.43003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..721M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294703200006}
\elib{https://elibrary.ru/item.asp?id=19066279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80051731797}
Linking options:
  • https://www.mathnet.ru/eng/sm7668
  • https://doi.org/10.1070/SM2011v202n05ABEH004163
  • https://www.mathnet.ru/eng/sm/v202/i5/p101
  • This publication is cited in the following 12 articles:
    1. A. Mirotin, “μ-Hankel operators on compact Abelian groups”, Anal Math, 49:2 (2023), 617  crossref
    2. A. R. Mirotin, “Hausdorff operators on compact abelian groups”, Mathematische Nachrichten, 296:9 (2023), 4108  crossref
    3. A. R. Mirotin, “Compact Hankel operators over compact Abelian groups”, St. Petersburg Math. J., 33:3 (2022), 569–584  mathnet  crossref
    4. Blecher D.P., Labuschagne L.E., “On Vector-Valued Characters For Noncommutative Function Algebras”, Complex Anal. Oper. Theory, 14:2 (2020), 31  crossref  mathscinet  zmath  isi  scopus
    5. Mirotin A.R., “on the General Form of Linear Functionals on the Hardy Spaces H-1 Over Compact Abelian Groups and Some of Its Applications”, Indag. Math.-New Ser., 28:2 (2017), 451–462  crossref  mathscinet  zmath  isi  scopus
    6. A. R. Mirotin, E. Yu. Kuzmenkova, “O gankelevykh operatorakh, assotsiirovannykh s lineino uporyadochennymi abelevymi gruppami”, Tr. IMM UrO RAN, 22, no. 4, 2016, 201–214  mathnet  crossref  mathscinet  elib
    7. A. R. Mirotin, “On the essential spectrum of λ-Toeplitz operators over compact Abelian groups”, J. Math. Anal. Appl., 424:2 (2015), 1286–1295  crossref  mathscinet  zmath  isi  scopus
    8. A. R. Mirotin, R. V. Dyba, “O konechnomernykh i yadernykh gankelevykh operatorakh v prostranstvakh Khardi H2 na kompaktnykh abelevykh gruppakh”, PFMT, 2015, no. 4(25), 74–79  mathnet
    9. R. V. Dyba, A. R. Mirotin, “Funktsii ogranichennoi srednei ostsillyatsii i gankelevy operatory na kompaktnykh abelevykh gruppakh”, Tr. IMM UrO RAN, 20, no. 2, 2014, 135–144  mathnet  mathscinet  elib
    10. V. V. Kisil, “Calculus of operators: covariant transform and relative convolutions”, Banach J. Math. Anal., 8:2 (2014), 156–184  crossref  mathscinet  zmath  isi  scopus
    11. A. R. Mirotin, R. S. Melnikov, “Teoremy o spektralnykh vklyucheniyakh dlya operatorov Tëplitsa v prostranstvakh Khardi Hp nad kompaktnoi abelevoi gruppoi”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2013, no. 6, 29–33  zmath  elib
    12. R. V. Dyba, “Teorema Nekhari na kompaktnykh abelevykh gruppakh s lineino uporyadochennoi gruppoi kharakterov”, PFMT, 2011, no. 3(8), 57–60  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:605
    Russian version PDF:232
    English version PDF:25
    References:93
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025