Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 4, Pages 201–214
DOI: https://doi.org/10.21538/0134-4889-2016-22-4-201-214
(Mi timm1366)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Hankel operators associated with linearly ordered abelian groups

A. R. Mirotin, E. Yu. Kuz'menkova

Gomel State University named after Francisk Skorina
Full-text PDF (257 kB) Citations (1)
References:
Abstract: We consider two variants of generalizations of Hankel operators to the case of linearly ordered abelian groups. Criteria for the boundedness and compactness of these operators are given, in particular, in terms of functions of bounded mean oscillation. It is proved that the generalized Hankel operators are non-Fredholm. Some applications to the theory of Toeplitz operators on groups are given.
Keywords: Hankel operator, integral Hankel operator, Fredholm operator, compact operator, bounded mean oscillation, linearly ordered abelian group, compact abelian group, Toeplitz operator.
Received: 18.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.986.62
MSC: 47B35, 43A17
Language: Russian
Citation: A. R. Mirotin, E. Yu. Kuz'menkova, “On Hankel operators associated with linearly ordered abelian groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 201–214
Citation in format AMSBIB
\Bibitem{MirKuz16}
\by A.~R.~Mirotin, E.~Yu.~Kuz'menkova
\paper On Hankel operators associated with linearly ordered abelian groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 4
\pages 201--214
\mathnet{http://mi.mathnet.ru/timm1366}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-4-201-214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3590934}
\elib{https://elibrary.ru/item.asp?id=27350138}
Linking options:
  • https://www.mathnet.ru/eng/timm1366
  • https://www.mathnet.ru/eng/timm/v22/i4/p201
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :58
    References:27
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024