Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kurakin, Leonid Gennadievich

Statistics Math-Net.Ru
Total publications: 26
Scientific articles: 26
Presentations: 1

Number of views:
This page:1988
Abstract pages:6232
Full texts:2140
References:800
Associate professor
Doctor of physico-mathematical sciences (2006)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:

https://www.mathnet.ru/eng/person18475
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/249113

Publications in Math-Net.Ru Citations
2022
1. L. G. Kurakin, I. V. Ostrovskaya, “On the Stability of the System of Thomson’s Vortex $n$-Gon and a Moving Circular Cylinder”, Rus. J. Nonlin. Dyn., 18:5 (2022),  915–926  mathnet  mathscinet
2021
2. Leonid G. Kurakin, Irina V. Ostrovskaya, “Resonances in the Stability Problem of a Point Vortex Quadrupole on a Plane”  mathnet  isi  scopus 1
3. Leonid G. Kurakin, Aik V. Kurdoglyan, “On the Isolation/Nonisolation of a Cosymmetric Equilibrium and Bifurcations in its Neighborhood”, Regul. Chaotic Dyn., 26:3 (2021),  258–270  mathnet  mathscinet  isi  scopus
2020
4. L. G. Kurakin, I. A. Lysenko, “On the Stability of the Orbit and the Invariant Set of Thomson’s Vortex Polygon in a Two-Fluid Plasma”, Rus. J. Nonlin. Dyn., 16:1 (2020),  3–11  mathnet  elib  scopus 4
5. A. V. Borisov, L. G. Kurakin, “On the Stability of a System of Two Identical Point Vortices and a Cylinder”, Trudy Mat. Inst. Steklova, 310 (2020),  33–39  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 310 (2020), 25–31  isi  scopus 2
2019
6. L. G. Kurakin, I. V. Ostrovskaya, “On the Stability of Thomson's Vortex $N$-gon and a Vortex Tripole/Quadrupole in Geostrophic Models of Bessel Vortices and in a Two-Layer Rotating Fluid: a Review”, Rus. J. Nonlin. Dyn., 15:4 (2019),  533–542  mathnet  elib  scopus 4
7. L. G. Kurakin, A. V. Kurdoglyan, “Semi-Invariant Form of Equilibrium Stability Criteria for Systems with One Cosymmetry”, Rus. J. Nonlin. Dyn., 15:4 (2019),  525–531  mathnet  elib  scopus 1
2017
8. Leonid G. Kurakin, Irina V. Ostrovskaya, “On Stability of Thomson’s Vortex $N$-gon in the Geostrophic Model of the Point Bessel Vortices”, Regul. Chaotic Dyn., 22:7 (2017),  865–879  mathnet  isi  scopus 11
2016
9. Leonid G. Kurakin, Irina V. Ostrovskaya, Mikhail A. Sokolovskiy, “On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016),  291–334  mathnet  mathscinet  isi  scopus 12
2012
10. L. G. Kurakin, I. V. Ostrovskaya, “The stability criterion of a regular vortex pentagon outside a circle”, Nelin. Dinam., 8:2 (2012),  355–368  mathnet
11. Leonid G. Kurakin, Irina V. Ostrovskaya, “Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle”, Regul. Chaotic Dyn., 17:5 (2012),  385–396  mathnet  mathscinet  zmath 19
12. Leonid G. Kurakin, “On the Stability of Thomson’s Vortex Pentagon Inside a Circular Domain”, Regul. Chaotic Dyn., 17:2 (2012),  150–169  mathnet 5
2011
13. Leonid G. Kurakin, “On the stability of Thomson's vortex pentagon inside a circular domain”, Nelin. Dinam., 7:3 (2011),  465–488  mathnet 2
2010
14. L. G. Kurakin, “On the stability of Thomson’s vortex configurations inside a circular domain”, Regul. Chaotic Dyn., 15:1 (2010),  40–58  mathnet  mathscinet  zmath 11
15. L. G. Kurakin, I. V. Ostrovskaya, “Stability of the Thomson vortex polygon with evenly many vortices outside a circular domain”, Sibirsk. Mat. Zh., 51:3 (2010),  584–598  mathnet  mathscinet  zmath  elib; Siberian Math. J., 51:3 (2010), 463–474  isi  elib  scopus 14
2009
16. L. G. Kurakin, “The stability of Thomson's configurations of vortices in a circular domain”, Nelin. Dinam., 5:3 (2009),  295–317  mathnet 9
17. L. G. Kurakin, “On the stability criteria in A. M. Lyapunov's paper “A study of one of the special cases of the problem of stability of motion””, Vladikavkaz. Mat. Zh., 11:3 (2009),  28–37  mathnet  mathscinet 3
2004
18. L. G. Kurakin, V. I. Yudovich, “On equilibrium bifurcations in the cosymmetry collapse of a dynamical system”, Sibirsk. Mat. Zh., 45:2 (2004),  356–374  mathnet  mathscinet  zmath  elib; Siberian Math. J., 45:2 (2004), 294–310  isi 4
2003
19. L. G. Kurakin, V. I. Yudovich, “Codimension One Bifurcation of 2-Dimensional Tori Born from an Equilibrium Family in Systems with Cosymmetry”, Mat. Zametki, 73:5 (2003),  796–800  mathnet  mathscinet  zmath  elib; Math. Notes, 73:5 (2003), 751–755  isi  scopus 4
2001
20. L. G. Kurakin, “On stability of boundary equilibria in systems with cosymmetry”, Sibirsk. Mat. Zh., 42:6 (2001),  1324–1334  mathnet  mathscinet; Siberian Math. J., 42:6 (2001), 1102–1110  isi 1
2000
21. L. G. Kurakin, V. I. Yudovich, “The Hopf bifurcation in a family of equilibria of a dynamical system with a multicosymmetry”, Differ. Uravn., 36:10 (2000),  1315–1323  mathnet  mathscinet; Differ. Equ., 36:10 (2000), 1452–1460 1
22. L. G. Kurakin, V. I. Yudovich, “Application of the Lyapunov–Schmidt method to the problem of the branching of a cycle from a family of equilibria of a system with multicosymmetry”, Sibirsk. Mat. Zh., 41:1 (2000),  136–149  mathnet  mathscinet  zmath; Siberian Math. J., 41:1 (2000), 114–124  isi 7
1999
23. V. I. Yudovich, L. G. Kurakin, “Bifurcation of a limit cycle from the equilibrium submanifold in a system with multiple cosymmetries”, Mat. Zametki, 66:2 (1999),  317–320  mathnet  mathscinet  zmath  elib; Math. Notes, 66:2 (1999), 254–258  isi 6
1998
24. L. G. Kurakin, “Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry”, Mat. Zametki, 63:4 (1998),  572–578  mathnet  mathscinet  zmath; Math. Notes, 63:4 (1998), 503–508  isi 10
1994
25. L. G. Kurakin, “On the Lyapunov chain of stability criteria in the critical case of a Jordan $2$-cell”, Dokl. Akad. Nauk, 337:1 (1994),  14–16  mathnet  mathscinet  zmath; Dokl. Math., 50:1 (1995), 10–13 3
26. L. G. Kurakin, “On the stability of a regular vortex $n$-gon”, Dokl. Akad. Nauk, 335:6 (1994),  729–731  mathnet  mathscinet  zmath; Dokl. Math., 39:4 (1994), 284–286 7

Presentations in Math-Net.Ru
1. Resonances in the stability problem of a Thomson vortex N-gon inside/outside circular domain and a point vortex quadrupole on a plane
L. G. Kurakin, I. V. Ostrovskaya
Regular and Chaotic Dynamics
November 26, 2021 11:00   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024