Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Volume 310, Pages 33–39
DOI: https://doi.org/10.4213/tm4106
(Mi tm4106)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the Stability of a System of Two Identical Point Vortices and a Cylinder

A. V. Borisova, L. G. Kurakinbcd

a Udmurt State University, Universitetskaya ul. 1, Izhevsk, 426034 Russia
b Water Problems Institute of the Russian Academy of Sciences, ul. Gubkina 3, Moscow, 119333 Russia
c Southern Mathematical Institute, Vladikavkaz Scientific Center of Russian Academy of Sciences, ul. Vatutina 53, Vladikavkaz, 362027 Russia
d Southern Federal University, Bol'shaya Sadovaya ul. 105/42, Rostov-on-Don, 344006 Russia
Full-text PDF (157 kB) Citations (2)
References:
Abstract: We consider the stability problem for a system of two identical point vortices and a circular cylinder located between them. The circulation around the cylinder is zero. There are two parameters in the problem: the added mass $a$ of the cylinder and $q=R^2/R_0^2$, where $R$ is the radius of the cylinder and $2R_0$ is the distance between vortices. We study the linearization matrix and the quadratic part of the Hamiltonian of the problem, find conditions of orbital stability and instability in nonlinear statement, and point out parameter domains in which linear stability holds and nonlinear analysis is required. The results for $a\to \infty $ are in agreement with the classical results for a fixed cylinder. We show that the mobility of the cylinder leads to the expansion of the stability region.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00399
20-55-10001
This work was supported by the Russian Foundation for Basic Research, project nos. 20-01-00399 (A.V.B.) and 20-55-10001 (L.G.K.).
Received: March 2, 2020
Revised: March 2, 2020
Accepted: April 27, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2020, Volume 310, Pages 25–31
DOI: https://doi.org/10.1134/S008154382005003X
Bibliographic databases:
Document Type: Article
UDC: 532.5.031
Language: Russian
Citation: A. V. Borisov, L. G. Kurakin, “On the Stability of a System of Two Identical Point Vortices and a Cylinder”, Selected issues of mathematics and mechanics, Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov, Trudy Mat. Inst. Steklova, 310, Steklov Math. Inst., Moscow, 2020, 33–39; Proc. Steklov Inst. Math., 310 (2020), 25–31
Citation in format AMSBIB
\Bibitem{BorKur20}
\by A.~V.~Borisov, L.~G.~Kurakin
\paper On the Stability of a System of Two Identical Point Vortices and a Cylinder
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 310
\pages 33--39
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4106}
\crossref{https://doi.org/10.4213/tm4106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4173189}
\elib{https://elibrary.ru/item.asp?id=44373852}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 310
\pages 25--31
\crossref{https://doi.org/10.1134/S008154382005003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000595790500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097061450}
Linking options:
  • https://www.mathnet.ru/eng/tm4106
  • https://doi.org/10.4213/tm4106
  • https://www.mathnet.ru/eng/tm/v310/p33
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:381
    Full-text PDF :87
    References:46
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024