Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 3, Pages 291–334
DOI: https://doi.org/10.1134/S1560354716030059
(Mi rcd80)
 

This article is cited in 13 scientific papers (total in 13 papers)

On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid

Leonid G. Kurakinab, Irina V. Ostrovskayab, Mikhail A. Sokolovskiycd

a Southern Mathematical Institute, Vladikavkaz Scienific Center of RAS, ul. Markusa 22, Vladikavkaz, 362027, Russia
b Institute for Mathematics, Mechanics and Computer Sciences, Southern Federal University, ul. Milchakova 8a, Rostov-on-Don, 344090, Russia
c Water Problems Institute, RAS, ul. Gubkina 3, Moscow, 119333, Russia
d P. P. Shirshov Institute of Oceanology, RAS, pr. Nakhimovski 36, Moscow, 117997, Russia
Citations (13)
References:
Abstract: A two-layer quasigeostrophic model is considered in the $f$-plane approximation. The stability of a discrete axisymmetric vortex structure is analyzed for the case when the structure consists of a central vortex of arbitrary intensity $\Gamma$ and two/three identical peripheral vortices. The identical vortices, each having a unit intensity, are uniformly distributed over a circle of radius $R$ in a single layer. The central vortex lies either in the same or in another layer. The problem has three parameters $(R, \Gamma, \alpha)$, where $\alpha$ is the difference between layer thicknesses. A limiting case of a homogeneous fluid is also considered. The theory of stability of steady-state motions of dynamic systems with a continuous symmetry group $\mathcal{G}$ is applied. The two definitions of stability used in the study are Routh stability and $\mathcal{G}$-stability. The Routh stability is the stability of a one-parameter orbit of a steady-state rotation of a vortex multipole, and the $\mathcal{G}$-stability is the stability of a three-parameter invariant set $O_{\mathcal{G}}$, formed by the orbits of a continuous family of steady-state rotations of a multipole. The problem of Routh stability is reduced to the problem of stability of a family of equilibria of a Hamiltonian system. The quadratic part of the Hamiltonian and the eigenvalues of the linearization matrix are studied analytically. The cases of zero total intensity of a tripole and a quadrupole are studied separately. Also, the Routh stability of a Thomson vortex triangle and square was proved at all possible values of problem parameters. The results of theoretical analysis are sustained by numerical calculations of vortex trajectories.
Keywords: discrete multipole vortex structure, two-layer rotating fluid, stability.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1398.2014/K
Russian Science Foundation 14-50-00095
The studies of the first two authors were supported within the framework of the design part of the State Assignment to SFU in the Sphere of Scientific Activity (Assignment No. 1.1398.2014/K), and the study of the third author was supported by the Russian Scientific Foundation, project No. 14-50-00095.
Received: 18.01.2016
Accepted: 03.04.2016
Bibliographic databases:
Document Type: Article
MSC: 76U05, 76B47, 76E20
Language: English
Citation: Leonid G. Kurakin, Irina V. Ostrovskaya, Mikhail A. Sokolovskiy, “On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334
Citation in format AMSBIB
\Bibitem{KurOstSok16}
\by Leonid G. Kurakin, Irina V. Ostrovskaya, Mikhail A. Sokolovskiy
\paper On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 3
\pages 291--334
\mathnet{http://mi.mathnet.ru/rcd80}
\crossref{https://doi.org/10.1134/S1560354716030059}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3508234}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377616400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84975894178}
Linking options:
  • https://www.mathnet.ru/eng/rcd80
  • https://www.mathnet.ru/eng/rcd/v21/i3/p291
  • This publication is cited in the following 13 articles:
    1. Leonid G. Kurakin, Irina V. Ostrovskaya, Mikhail A. Sokolovskiy, “On the Stability of Discrete $N+1$ Vortices in a Two-Layer Rotating Fluid: The Cases $N=4,5,6$”, Regul. Chaot. Dyn., 2024  crossref
    2. Elizaveta M. Artemova, Alexander A. Kilin, “Dynamics of Two Vortex Rings in a Bose – Einstein Condensate”, Regul. Chaotic Dyn., 27:6 (2022), 713–732  mathnet  crossref  mathscinet
    3. Jean N. Reinaud, “Three-dimensional Quasi-geostrophic Staggered Vortex Arrays”, Regul. Chaotic Dyn., 26:5 (2021), 505–525  mathnet  crossref
    4. Leonid G. Kurakin, Irina V. Ostrovskaya, “Resonances in the Stability Problem of a Point Vortex Quadrupole on a Plane”, Regul. Chaotic Dyn., 26:5 (2021), 526–542  mathnet  crossref
    5. V. G. Makarov, “Group scattering of point vortices on an unbounded plane”, J. Fluid Mech., 911 (2021), A24  crossref  mathscinet  isi  scopus
    6. L. G. Kurakin, I. A. Lysenko, “On the Stability of the Orbit and the Invariant Set of Thomson’s Vortex Polygon in a Two-Fluid Plasma”, Rus. J. Nonlin. Dyn., 16:1 (2020), 3–11  mathnet  crossref  elib
    7. A. V. Borisov, L. G. Kurakin, “On the Stability of a System of Two Identical Point Vortices and a Cylinder”, Proc. Steklov Inst. Math., 310 (2020), 25–31  mathnet  crossref  crossref  mathscinet  isi  elib
    8. M. A. Sokolovskiy, X. J. Carton, B. N. Filyushkin, “Mathematical modeling of vortex interaction using a three-layer quasigeostrophic model. Part 1: point-vortex approach”, Mathematics, 8:8 (2020), 1228  crossref  isi  scopus
    9. L. Kurakin, I. Ostrovskaya, “On the Effects of Circulation Around a Circle on the Stability of a Thomson Vortexn-gon”, Mathematics, 8:6 (2020), 1033  crossref  isi  scopus
    10. L. G. Kurakin, I. V. Ostrovskaya, “On the Stability of Thomson's Vortex $N$-gon and a Vortex Tripole/Quadrupole in Geostrophic Models of Bessel Vortices and in a Two-Layer Rotating Fluid: a Review”, Rus. J. Nonlin. Dyn., 15:4 (2019), 533–542  mathnet  crossref  elib
    11. L. G. Kurakin, I. A. Lysenko, I. V. Ostrovskaya, M. A. Sokolovskiy, “On stability of the Thomson's vortex n-gon in the geostrophic model of the point vortices in two-layer fluid”, J. Nonlinear Sci., 29:4 (2019), 1659–1700  crossref  mathscinet  zmath  isi  scopus
    12. Leonid G. Kurakin, Irina V. Ostrovskaya, “On Stability of Thomson’s Vortex $N$-gon in the Geostrophic Model of the Point Bessel Vortices”, Regul. Chaotic Dyn., 22:7 (2017), 865–879  mathnet  crossref
    13. J. N. Reinaud, M. A. Sokolovskiy, X. Carton, “Geostrophic tripolar vortices in a two-layer fluid: linear stability and nonlinear evolution of equilibria”, Phys. Fluids, 29:3 (2017), 036601  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:223
    References:53
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025