Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Antipin, Anatoly Sergeevich

Statistics Math-Net.Ru
Total publications: 82
Scientific articles: 82

Number of views:
This page:3665
Abstract pages:27072
Full texts:10024
References:3298
Main Scientist Researcher
Doctor of physico-mathematical sciences (1991)
Speciality: 05.13.16 (Computer techniques, mathematical modelling, and mathematical methods with an application to scientific researches)
Birth date: 10.09.1939
E-mail: ,
Website: http://www.ccas.ru/antipin/ant-r.htm
Keywords: nonlinear programming; optimization methods: variational inequalities; equilibrium programming; fixed points; convetrgence; stability.

Subject:

Two new inequalities are established, first of which describes a class of strongly convex differentiable functions, second inequality links three any points of set for any convex function, alwyas supposing that gradients of these functions subjected to the Lipschitz conditions. For minimization of functions over convex sets is formulated differential (continuous) the gradient projection method of first and second order with projection operator of a point onto a permissible set. In convex case the convergence of trajectories to optimal solution is proved, estimates of convergence rate for continuous methods are given. A equilibrium programming problem is formulated, where a solution of it is a fixed point of extreme mapping. In particular, a equilibrium problem includes a n-person game with Nash equilibrium. It is shown that the equilibrium problem can always be splitted on a sum of two problems one of which is saddle problem and other is a optimiztion one. New inequality is offered, with the help of which it is possible to describe the positive semi-definite class of equilibrium problems. The theory of methods to compute fixed points of this class problems is developed. The theory offered includes extragradient and extraproximal approaches, Newton-type methods and regularization and penalty function methods (the latter are developed in the co-authorship with F. P. Vasil'ev). It is shown that the offered theory is fundamentals to develop methods of the solution of n-person non-zero-sum games. The convergence to Nash equilibrium for two-person non-zero-sum game for extragradient and extraproximal methods are proved.

Biography

Graduated from Faculty of Mathematics and Mechanics of M. V. Lomonosov Moscow State University (MSU) in 1967 (department of numerical methods). Ph.D. thesis was defended in 1979. D.Sci. thesis was defended in 1991. A list of my works contains more than 90 titles. Since 1995 I and F. P. Vasil'ev have led the research seminar at MSU on optimization methods.

In 2000 I was awarded the prize of International Akademic Publishing Company "Nauka/Interpereodica" for a series of papers on development of consept of equilibrium programming problem.

   
Main publications:
  • Antipin A. Gradient approach of computing fixed points of equilibrium problems // Journal of Global Optimization. 2001, 1–25.
  • Antipin A. Gradient-Type Method for Equilibrium Programming Problems with Coupled Constraints // Yugoslav Journal of Operations research. 2000. V. 10, no. 2, 1–15.
  • Antipin A. Differential equations for equilibrium problems with coupled constraints // Nonlinear Analysis, 2001, V. 47, 1833–1844.

https://www.mathnet.ru/eng/person17565
https://ru.wikipedia.org/wiki/Antipin,_Anatolii_Sergeevich
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/236802
https://elibrary.ru/author_items.asp?authorid=53
ISTINA https://istina.msu.ru/workers/157972083
https://orcid.org/0000-0003-1771-8580
https://www.webofscience.com/wos/author/record/I-4593-2013
https://www.scopus.com/authid/detail.url?authorId=7003408046

Publications in Math-Net.Ru Citations
2020
1. A. S. Antipin, E. V. Khoroshilova, “Dynamics, phase constraints, and linear programming”, Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020),  177–196  mathnet  elib; Comput. Math. Math. Phys., 60:2 (2020), 184–202  isi  scopus 6
2018
2. A. S. Antipin, E. V. Khoroshilova, “Feedback synthesis for a terminal control problem”, Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  1973–1991  mathnet  elib; Comput. Math. Math. Phys., 58:12 (2018), 1903–1918  isi  scopus 8
2017
3. A. S. Antipin, “Optimization methods for the sensitivity function with constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  33–42  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 36–44  isi 1
4. A. S. Antipin, V. Jaćimović, M. Jaćimović, “Dynamics and variational inequalities”, Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017),  783–800  mathnet  elib; Comput. Math. Math. Phys., 57:5 (2017), 784–801  isi  scopus 12
5. A. S. Antipin, L. A. Artem'eva, F. P. Vasil'ev, “Extragradient method for solving an optimal control problem with implicitly specified boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017),  49–54  mathnet  elib; Comput. Math. Math. Phys., 57:1 (2017), 64–70  isi  scopus 2
2016
6. F. P. Vasil'ev, A. S. Antipin, L. A. Artem'eva, “Extragradient method for finding a saddle point in a multicriteria problem with dynamics”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  71–78  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 203–210  isi  scopus
2015
7. A. S. Antipin, E. V. Khoroshilova, “Multicriteria boundary value problem in dynamics”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  20–29  mathnet  mathscinet  elib 3
8. Anatoly S. Antipin, Elena V. Khoroshilova, “Linear programming and dynamics”, Ural Math. J., 1:1 (2015),  3–19  mathnet  zmath  elib 11
9. A. S. Antipin, O. O. Vasilieva, “Dynamic method of multipliers in terminal control”, Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  776–797  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 55:5 (2015), 766–787  isi  elib  scopus 10
2014
10. A. S. Antipin, E. V. Khoroshilova, “A Boundary Value Problem of Terminal Control with a Quadratic Criterion of Quality”, Bulletin of Irkutsk State University. Series Mathematics, 8 (2014),  7–28  mathnet
11. A. S. Antipin, E. V. Khoroshilova, “Optimal control with connected initial and terminal conditions”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  13–28  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), S9–S25  isi  scopus 16
12. A. S. Antipin, “Terminal control of boundary models”, Zh. Vychisl. Mat. Mat. Fiz., 54:2 (2014),  257–285  mathnet  elib; Comput. Math. Math. Phys., 54:2 (2014), 275–302  isi  elib  scopus 18
2013
13. A. S. Antipin, E. V. Khoroshilova, “Linear programming and dynamics”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  7–25  mathnet  mathscinet  elib 8
14. A. S. Antipin, N. Mijailovic, M. Jacimovic, “A second-order iterative method for solving quasi-variational inequalities”, Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013),  336–342  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 53:3 (2013), 258–264  isi  elib  scopus 14
2012
15. F. P. Vasil'ev, A. S. Antipin, L. A. Artem'eva, “A regularized differential extraproximal method for finding an equilibrium in two-person saddle-point games”, Num. Meth. Prog., 13:1 (2012),  149–160  mathnet
16. A. S. Antipin, L. A. Artem'eva, F. P. Vasil'ev, “Regularized extraproximal method for finding equilibrium points in two-person saddle-point games”, Zh. Vychisl. Mat. Mat. Fiz., 52:7 (2012),  1231–1241  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 52:7 (2012), 1007–1016  isi  elib  scopus
2011
17. A. S. Antipin, “The method of modified Lagrange function for optimal control problem”, Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011),  27–44  mathnet 3
18. F. P. Vasil'ev, E. V. Khoroshilova, A. S. Antipin, “Regularized extragradient method for finding a saddle point in an optimal control problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  27–37  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S186–S196  isi  scopus 10
19. A. S. Antipin, A. I. Golikov, E. V. Khoroshilova, “Sensitivity function: Properties and applications”, Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011),  2126–2142  mathnet  mathscinet; Comput. Math. Math. Phys., 51:12 (2011), 2000–2016  isi  scopus 10
20. A. S. Antipin, N. Mijailovic, M. Jacimovic, “A second-order continuous method for solving quasi-variational inequalities”, Zh. Vychisl. Mat. Mat. Fiz., 51:11 (2011),  1973–1980  mathnet  mathscinet; Comput. Math. Math. Phys., 51:11 (2011), 1856–1863  isi  scopus 11
21. A. S. Antipin, L. A. Artem'eva, F. P. Vasil'ev, “Extraproximal method for solving two-person saddle-point games”, Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011),  1576–1587  mathnet  mathscinet; Comput. Math. Math. Phys., 51:9 (2011), 1472–1482  isi  scopus 8
2010
22. A. S. Antipin, E. V. Horoshilova, “Extragradient methods for optimal control problems with linear restrictions”, Bulletin of Irkutsk State University. Series Mathematics, 3:3 (2010),  2–20  mathnet 1
23. A. S. Antipin, L. A. Artem'eva, F. P. Vasil'ev, “Regularized extragradient method for solving parametric multicriteria equilibrium programming problem”, Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010),  2083–2098  mathnet; Comput. Math. Math. Phys., 50:12 (2010), 1975–1989  scopus 3
24. A. S. Antipin, L. A. Artem'eva, F. P. Vasil'ev, “Multicriteria equilibrium programming: the extragradient method”, Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010),  234–241  mathnet  mathscinet; Comput. Math. Math. Phys., 50:2 (2010), 224–230  isi  scopus 5
2009
25. A. S. Antipin, O. A. Popova, “Equilibrium model of a credit market: Statement of the problem and solution methods”, Zh. Vychisl. Mat. Mat. Fiz., 49:3 (2009),  465–481  mathnet  mathscinet; Comput. Math. Math. Phys., 49:3 (2009), 450–465  isi  scopus 9
2008
26. A. S. Antipin, “Saddle problem and optimization problem as an integrated system”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  5–15  mathnet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S3–S14  isi  scopus 9
2007
27. A. S. Antipin, “Multicriteria equilibrium programming: Extraproximal methods”, Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007),  1998–2013  mathnet  mathscinet; Comput. Math. Math. Phys., 47:12 (2007), 1912–1927  scopus 17
28. A. S. Antipin, F. P. Vasil'ev, A. S. Stukalov, “A regularized Newton method for solving equilibrium programming problems with an inexactly specified set”, Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  21–33  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 47:1 (2007), 19–31  scopus 7
2006
29. F. P. Vasil'ev, A. S. Antipin, “Methods for solving unstable equilibrium programming problems with coupled variables”, Trudy Inst. Mat. i Mekh. UrO RAN, 12:1 (2006),  48–63  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 253, suppl. 1 (2006), S229–S246  scopus 1
30. A. S. Antipin, F. P. Vasil'ev, A. S. Stukalov, M. Jaćimović, “Newton's method for solving equilibrium problems”, Num. Meth. Prog., 7:3 (2006),  202–210  mathnet 2
31. A. S. Antipin, “Extraproximal approach to calculating equilibriums in pure exchange models”, Zh. Vychisl. Mat. Mat. Fiz., 46:10 (2006),  1771–1783  mathnet  mathscinet; Comput. Math. Math. Phys., 46:10 (2006), 1687–1698  scopus 6
2005
32. A. S. Antipin, B. A. Budak, F. P. Vasil'ev, “Methods for solving equilibrium programming problems”, Differ. Uravn., 41:1 (2005),  3–11  mathnet  mathscinet; Differ. Equ., 41:1 (2005), 1–9 3
33. A. S. Antipin, “An extraproximal method for solving equilibrium programming problems and games with coupled variables”, Zh. Vychisl. Mat. Mat. Fiz., 45:12 (2005),  2102–2111  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:12 (2005), 2020–2029 17
34. A. S. Antipin, “An extraproximal method for solving equilibrium programming problems and games”, Zh. Vychisl. Mat. Mat. Fiz., 45:11 (2005),  1969–1990  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:11 (2005), 1893–1914 49
35. A. S. Antipin, O. A. Popova, “A two-person game in mixed strategies as a model of training”, Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1566–1574  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:9 (2005), 1511–1519
36. A. S. Antipin, F. P. Vasil'ev, A. Delavarkhalafi, “Regularization methods with penalty functions for finding nash equilibria in a bilinear nonzero-sum two-person game”, Zh. Vychisl. Mat. Mat. Fiz., 45:5 (2005),  813–823  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:5 (2005), 783–793 1
37. A. S. Antipin, F. P. Vasil'ev, S. V. Shpirko, “A regularized extragradient method for solving equilibrium programming problems with an inexactly specified set”, Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  650–660  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:4 (2005), 626–636 2
38. A. S. Antipin, F. P. Vasil'ev, “Regularization methods for solving equilibrium programming problems with coupled constraints”, Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  27–40  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:1 (2005), 23–36 12
2004
39. A. S. Antipin, F. P. Vasil'ev, “Regularized prediction method for solving variational inequalities with an inexactly given set”, Zh. Vychisl. Mat. Mat. Fiz., 44:5 (2004),  796–804  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 44:5 (2004), 750–758 13
2003
40. A. S. Antipin, “Solving Two-Person Nonzero-Sum Games with the Help of Differential Equations”, Differ. Uravn., 39:1 (2003),  12–22  mathnet  mathscinet; Differ. Equ., 39:1 (2003), 11–22 2
41. A. S. Antipin, F. P. Vasil'ev, S. V. Shpirko, “A regularized extra-gradient method for solving the equilibrium programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 43:10 (2003),  1451–1458  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:10 (2003), 1391–1393 8
2002
42. A. S. Antipin, B. A. Budak, F. P. Vasil'ev, “A Regularized Continuous Extragradient Method of the First Order with a Variable Metric for Problems of Equilibrium Programming”, Differ. Uravn., 38:12 (2002),  1587–1595  mathnet  mathscinet; Differ. Equ., 38:12 (2002), 1683–1693 6
43. A. S. Antipin, “Multiplier methods in bilinear equilibrium programming with application to nonzero-sum games”, Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002),  3–30  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2002no. , suppl. 1, S1–S31
44. A. S. Antipin, F. P. Vasil'ev, “A regularized extragradient method for solving variational inequalities”, Num. Meth. Prog., 3:1 (2002),  237–244  mathnet
45. A. S. Antipin, B. A. Budak, F. P. Vasil'ev, “A regularized first-order continuous extragradient method with variable metric for solving the problems of equilibrium programming with an inexact set”, Num. Meth. Prog., 3:1 (2002),  211–221  mathnet
46. A. S. Antipin, F. P. Vasil'ev, “Regularization methods, based on the extension of a set, for solving an equilibrium programming problem with inexact input data”, Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1158–1165  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 42:8 (2002), 1115–1122 8
2001
47. A. S. Antipin, F. P. Vasil'ev, “A residual method for equilibrium problems with an inexcactly specified set”, Zh. Vychisl. Mat. Mat. Fiz., 41:1 (2001),  3–8  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 41:1 (2001), 1–6 9
2000
48. A. S. Antipin, “Solving variational inequalities with coupling constraints with the use of differential equations”, Differ. Uravn., 36:11 (2000),  1443–1451  mathnet  mathscinet; Differ. Equ., 36:11 (2000), 1587–1596 15
49. A. S. Antipin, “Solution methods for variational inequalities with coupled constraints”, Zh. Vychisl. Mat. Mat. Fiz., 40:9 (2000),  1291–1307  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 40:9 (2000), 1239–1254 41
50. A. S. Antipin, “The interior linearization method for equilibrium programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 40:8 (2000),  1142–1162  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 40:8 (2000), 1096–1115 6
1999
51. A. S. Antipin, “Second-order controlled differential gradient methods for solving equilibrium problems”, Differ. Uravn., 35:5 (1999),  590–599  mathnet  mathscinet; Differ. Equ., 35:5 (1999), 592–601
52. A. S. Antipin, F. P. Vasil'ev, “A stabilization method for equilibrium programming problems with an approximately given set”, Zh. Vychisl. Mat. Mat. Fiz., 39:11 (1999),  1779–1786  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 39:11 (1999), 1707–1714 22
1998
53. A. S. Antipin, “A differential linearization method in equilibrium programming”, Differ. Uravn., 34:11 (1998),  1445–1458  mathnet  mathscinet; Differ. Equ., 34:11 (1998), 1445–1458 2
54. A. S. Antipin, “The differential controlled gradient method for symmetric extremal mappings”, Differ. Uravn., 34:8 (1998),  1018–1028  mathnet  mathscinet; Differ. Equ., 34:8 (1998), 1020–1030 1
55. A. S. Antipin, “Splitting of the gradient approach for solving extreme inclusions”, Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1118–1132  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 38:7 (1998), 1069–1082 19
1997
56. A. S. Antipin, “Balanced Programming: Gradient-Type Methods”, Avtomat. i Telemekh., 1997, no. 8,  125–137  mathnet  mathscinet  zmath; Autom. Remote Control, 58:8 (1997), 1337–1347 36
57. A. S. Antipin, “The method of splitting differential gradient equations for extremal inclusions”, Differ. Uravn., 33:11 (1997),  1451–1461  mathnet  mathscinet; Differ. Equ., 33:11 (1997), 1457–1467
58. A. S. Antipin, “Computation of fixed points of symmetric extremal mappings”, Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 12,  3–15  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 41:12 (1997), 1–13 2
59. T. V. Amochkina, A. S. Antipin, F. P. Vasil'ev, “Continuous linearization method with a variable metric for problems in convex programming”, Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1459–1466  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 37:12 (1997), 1415–1421 5
60. A. S. Antipin, “Equilibrium programming: Proximal methods”, Zh. Vychisl. Mat. Mat. Fiz., 37:11 (1997),  1327–1339  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 37:11 (1997), 1285–1296 52
61. A. S. Antipin, “Calculation of fixed points of extremal mappings by gradient-type methods”, Zh. Vychisl. Mat. Mat. Fiz., 37:1 (1997),  42–53  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 37:1 (1997), 40–50 18
1996
62. A. S. Antipin, “Differential gradient systems for solving equilibrium programming problems”, Differ. Uravn., 32:11 (1996),  1443–1451  mathnet  mathscinet; Differ. Equ., 32:11 (1996), 1439–1446
63. A. S. Antipin, A. Nedić, M. Jaćimović, “A two-step linearization method for minimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996),  18–25  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 36:4 (1996), 431–437  isi 7
1995
64. A. S. Antipin, “Computation of fixed points of extremal mappings”, Dokl. Akad. Nauk, 342:3 (1995),  300–303  mathnet  mathscinet  zmath 1
65. A. S. Antipin, “On differential gradient methods of predictive type for computing fixed points of extremal mappings”, Differ. Uravn., 31:11 (1995),  1786–1795  mathnet  mathscinet; Differ. Equ., 31:11 (1995), 1754–1763 13
66. A. S. Antipin, F. P. Vasil'ev, “On a continuous minimization method in spaces with a variable metric”, Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12,  3–9  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 39:12 (1995), 1–6 6
67. A. S. Antipin, “Iterative methods of predictive type for computing fixed points of extremal mappings”, Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 11,  17–27  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 39:11 (1995), 14–24 3
68. A. S. Antipin, “Estimates for the rate of convergence of the gradient projection method”, Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 6,  16–24  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 39:6 (1995), 14–22 4
69. A. S. Antipin, “The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence”, Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995),  688–704  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 35:5 (1995), 539–551  isi 55
1994
70. A. S. Antipin, “Saddle gradient feedback-controlled processes”, Avtomat. i Telemekh., 1994, no. 3,  12–23  mathnet  mathscinet  zmath; Autom. Remote Control, 55:2 (1994), 311–320 16
71. A. S. Antipin, “On the finite convergence of processes to a sharp minimum and a smooth minimum with a sharp derivative”, Differ. Uravn., 30:11 (1994),  1843–1854  mathnet  mathscinet; Differ. Equ., 30:11 (1994), 1703–1713 1
72. A. S. Antipin, “Minimization of convex functions on convex sets by means of differential equations”, Differ. Uravn., 30:9 (1994),  1475–1486  mathnet  mathscinet; Differ. Equ., 30:9 (1994), 1365–1375 4
73. A. S. Antipin, A. Nedić, M. Jaćimović, “A three-step method of linearization for minimization problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 12,  3–7  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 38:12 (1994), 1–5 5
1993
74. A. S. Antipin, “Controlled gradient saddle differential systems”, Dokl. Akad. Nauk, 333:6 (1993),  693–695  mathnet  mathscinet  zmath; Dokl. Math., 48:3 (1994), 630–634
75. A. S. Antipin, “Proximal differential systems with feedback control”, Dokl. Akad. Nauk, 329:2 (1993),  119–121  mathnet  mathscinet  zmath; Dokl. Math., 47:2 (1993), 183–186 2
76. A. S. Antipin, “Feedback-controlled second-order proximal differential systems”, Differ. Uravn., 29:11 (1993),  1843–1855  mathnet  mathscinet; Differ. Equ., 29:11 (1993), 1597–1607
77. A. S. Antipin, “An interior linearization method”, Zh. Vychisl. Mat. Mat. Fiz., 33:12 (1993),  1776–1791  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 33:12 (1993), 1555–1568  isi 2
1992
78. A. S. Antipin, “Controlled proximal differential systems for solving saddle problems”, Differ. Uravn., 28:11 (1992),  1846–1861  mathnet  mathscinet; Differ. Equ., 28:11 (1992), 1498–1510 16
1989
79. A. S. Antipin, “On models of interaction between manufacturers, consumers, and the transportation system”, Avtomat. i Telemekh., 1989, no. 10,  105–113  mathnet  zmath; Autom. Remote Control, 50:10 (1989), 1391–1398 8
1987
80. A. S. Antipin, “Methods of solving systems of convex programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 27:3 (1987),  368–376  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 27:2 (1987), 30–35 18
1986
81. A. S. Antipin, “An equilibrium problem and methods for its solution”, Avtomat. i Telemekh., 1986, no. 9,  75–82  mathnet  mathscinet  zmath; Autom. Remote Control, 47:9 (1985), 1231–1238 1
82. A. S. Antipin, “Extrapolational methods for calculation of a saddle point of Lagrange function and their application to problems with separable block structure”, Zh. Vychisl. Mat. Mat. Fiz., 26:1 (1986),  150–151  mathnet; U.S.S.R. Comput. Math. Math. Phys., 26:1 (1986), 96 8

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024