Abstract:
We propose a regularized variant of the extragradient method of saddle point search for a convex-concave functional defined on solutions of control systems of linear ordinary differential equations. We assume that the input data of the problem are given inaccurately. Since the problem under consideration is, generally speaking, unstable under a disturbance in the input data, we propose a regularized variant of the extragradient method, investigate its convergence, and construct a regularizing operator. The regularization parameters of the method agree asymptotically with the disturbance level of the input data.
Keywords:
extragradient method, optimal control, saddle point, regularization.
Citation:
F. P. Vasil'ev, E. V. Khoroshilova, A. S. Antipin, “Regularized extragradient method for finding a saddle point in an optimal control problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 27–37; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S186–S196
\Bibitem{VasKhoAnt11}
\by F.~P.~Vasil'ev, E.~V.~Khoroshilova, A.~S.~Antipin
\paper Regularized extragradient method for finding a~saddle point in an optimal control problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 1
\pages 27--37
\mathnet{http://mi.mathnet.ru/timm669}
\elib{https://elibrary.ru/item.asp?id=17869780}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 275
\issue , suppl. 1
\pages S186--S196
\crossref{https://doi.org/10.1134/S0081543811090148}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297915900014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055196950}
Linking options:
https://www.mathnet.ru/eng/timm669
https://www.mathnet.ru/eng/timm/v17/i1/p27
This publication is cited in the following 10 articles:
Anatoly Antipin, Elena Khoroshilova, Lecture Notes in Computer Science, 13781, Optimization and Applications, 2022, 108
Antipin A. Khoroshilova E., “Controlled Dynamic Model With Boundary-Value Problem of Minimizing a Sensitivity Function”, Optim. Lett., 13:3, SI (2019), 451–473
A. S. Antipin, E. V. Khoroshilova, “Saddle Point Approach To Solving Problem of Optimal Control With Fixed Ends”, J. Glob. Optim., 65:1, SI (2016), 3–17
A. S. Antipin, E. V. Khoroshilova, “On Methods of Terminal Control With Boundary-Value Problems: Lagrange Approach”, Optimization and Its Applications in Control and Data Sciences: in Honor of Boris T. Polyak'S 80Th Birthday, Springer Optimization and Its Applications, 115, ed. Goldengorin B., Springer International Publishing Ag, 2016, 17–49
A. S. Antipin, E. V. Khoroshilova, “Mnogokriterialnaya kraevaya zadacha v dinamike”, Tr. IMM UrO RAN, 21, no. 3, 2015, 20–29
Anatoly S. Antipin, Elena V. Khoroshilova, “Linear programming and dynamics”, Ural Math. J., 1:1 (2015), 3–19
A. S. Antipin, “Terminal control of boundary models”, Comput. Math. Math. Phys., 54:2 (2014), 275–302
A. S. Antipin, E. V. Khoroshilova, “Optimal control with connected initial and terminal conditions”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), S9–S25
A. S. Antipin, E. V. Khoroshilova, “O kraevoi zadache terminalnogo upravleniya s kvadratichnym kriteriem kachestva”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 8 (2014), 7–28
A. S. Antipin, E. V. Khoroshilova, “Lineinoe programmirovanie i dinamika”, Tr. IMM UrO RAN, 19, no. 2, 2013, 7–25