Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 2, Pages 13–28 (Mi timm1055)  

This article is cited in 16 scientific papers (total in 16 papers)

Optimal control with connected initial and terminal conditions

A. S. Antipina, E. V. Khoroshilovab

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
References:
Abstract: An optimal control problem with linear dynamics is considered on a fixed time interval. The ends of the interval correspond to terminal spaces, and a finite-dimensional optimization problem is formulated on the Cartesian product of these spaces. Two components of the solution of this problem define the initial and terminal conditions for the controlled dynamics. The dynamics in the optimal control problem is treated as an equality constraint. The controls are assumed to be bounded in the norm of $\mathrm L_2$. A saddle-point method is proposed to solve the problem. The method is based on finding saddle points of the Lagrangian. The weak convergence of the method in controls and its strong convergence in state trajectories, conjugate trajectories, and terminal variables are proved.
Keywords: terminal control, boundary value problems, convex programming, Lagrange function, solution methods, convergence.
Received: 19.01.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 289, Issue 1, Pages S9–S25
DOI: https://doi.org/10.1134/S0081543815050028
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. S. Antipin, E. V. Khoroshilova, “Optimal control with connected initial and terminal conditions”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 13–28; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), S9–S25
Citation in format AMSBIB
\Bibitem{AntKho14}
\by A.~S.~Antipin, E.~V.~Khoroshilova
\paper Optimal control with connected initial and terminal conditions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 13--28
\mathnet{http://mi.mathnet.ru/timm1055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3174247}
\elib{https://elibrary.ru/item.asp?id=21585621}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 289
\issue , suppl. 1
\pages S9--S25
\crossref{https://doi.org/10.1134/S0081543815050028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356931500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932646895}
Linking options:
  • https://www.mathnet.ru/eng/timm1055
  • https://www.mathnet.ru/eng/timm/v20/i2/p13
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :107
    References:70
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024