Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 2, Pages 13–28 (Mi timm1055)  

This article is cited in 16 scientific papers (total in 16 papers)

Optimal control with connected initial and terminal conditions

A. S. Antipina, E. V. Khoroshilovab

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
References:
Abstract: An optimal control problem with linear dynamics is considered on a fixed time interval. The ends of the interval correspond to terminal spaces, and a finite-dimensional optimization problem is formulated on the Cartesian product of these spaces. Two components of the solution of this problem define the initial and terminal conditions for the controlled dynamics. The dynamics in the optimal control problem is treated as an equality constraint. The controls are assumed to be bounded in the norm of L2. A saddle-point method is proposed to solve the problem. The method is based on finding saddle points of the Lagrangian. The weak convergence of the method in controls and its strong convergence in state trajectories, conjugate trajectories, and terminal variables are proved.
Keywords: terminal control, boundary value problems, convex programming, Lagrange function, solution methods, convergence.
Received: 19.01.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 289, Issue 1, Pages S9–S25
DOI: https://doi.org/10.1134/S0081543815050028
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. S. Antipin, E. V. Khoroshilova, “Optimal control with connected initial and terminal conditions”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 13–28; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), S9–S25
Citation in format AMSBIB
\Bibitem{AntKho14}
\by A.~S.~Antipin, E.~V.~Khoroshilova
\paper Optimal control with connected initial and terminal conditions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 13--28
\mathnet{http://mi.mathnet.ru/timm1055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3174247}
\elib{https://elibrary.ru/item.asp?id=21585621}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 289
\issue , suppl. 1
\pages S9--S25
\crossref{https://doi.org/10.1134/S0081543815050028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356931500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932646895}
Linking options:
  • https://www.mathnet.ru/eng/timm1055
  • https://www.mathnet.ru/eng/timm/v20/i2/p13
  • This publication is cited in the following 16 articles:
    1. Anatoly Antipin, Elena Khoroshilova, Lecture Notes in Computer Science, 13781, Optimization and Applications, 2022, 108  crossref
    2. Anatoly Antipin, Elena Khoroshilova, Lecture Notes in Computer Science, 13078, Optimization and Applications, 2021, 151  crossref
    3. A. S. Antipin, E. V. Khoroshilova, “Dynamics, phase constraints, and linear programming”, Comput. Math. Math. Phys., 60:2 (2020), 184–202  mathnet  mathnet  crossref  crossref  isi  scopus
    4. V. G. Malinov, “Projection generalized two-point extragradient quasi-Newton method for saddle-point and other problems”, Comput. Math. Math. Phys., 60:2 (2020), 227–239  mathnet  mathnet  crossref  crossref  isi  scopus
    5. A. Antipin, E. Khoroshilova, “Controlled dynamic model with boundary-value problem of minimizing a sensitivity function”, Optim. Lett., 13:3, SI (2019), 451–473  crossref  isi
    6. A. V. Fominykh, “Open-loop control of a plant described by a system with nonsmooth right-hand side”, Comput. Math. Math. Phys., 59:10 (2019), 1639–1648  mathnet  crossref  crossref  isi  elib
    7. A. S. Antipin, V. Jaćimović, M. Jaćimović, “Dynamics and variational inequalities”, Comput. Math. Math. Phys., 57:5 (2017), 784–801  mathnet  crossref  crossref  isi  elib
    8. A. Antipin, “Sufficient conditions and evidence-based solutions”, 2017 Constructive Nonsmooth Analysis and Related Topics (CNSA), Dedicated to the Memory of V.F. Demyanov, ed. L. Polyakova, IEEE, 2017, 11–13  isi
    9. E. Khoroshilova, “Minimizing a sensitivity function as boundary-value problem in terminal control”, 2017 Constructive Nonsmooth Analysis and Related Topics (CNSA), Dedicated to the Memory of V.F. Demyanov, ed. L. Polyakova, IEEE, 2017, 149–151  isi
    10. Anatoly Antipin, 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA), 2017, 1  crossref
    11. Elena Khoroshilova, 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA), 2017, 1  crossref
    12. A. Antipin, E. Khoroshilova, “Saddle point approach to solving problem of optimal control with fixed ends”, J. Glob. Optim., 65:1, SI (2016), 3–17  crossref  mathscinet  zmath  isi  scopus
    13. A. Antipin, E. Khoroshilova, “On methods of terminal control with boundary-value problems: Lagrange approach”, Optimization and Its Applications in Control and Data Sciences, In honor of Boris T. Polyak’s 80th birthday, Springer Optimization and Its Applications, 115, ed. B. Goldengorin, Springer, 2016, 17–49  crossref  mathscinet  zmath  isi  scopus
    14. A. S. Antipin, O. O. Vasilieva, “Dynamic method of multipliers in terminal control”, Comput. Math. Math. Phys., 55:5 (2015), 766–787  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    15. A. S. Antipin, E. V. Khoroshilova, “Mnogokriterialnaya kraevaya zadacha v dinamike”, Tr. IMM UrO RAN, 21, no. 3, 2015, 20–29  mathnet  mathscinet  elib
    16. A. S. Antipin, E. V. Khoroshilova, “O kraevoi zadache terminalnogo upravleniya s kvadratichnym kriteriem kachestva”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 8 (2014), 7–28  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:490
    Full-text PDF :115
    References:77
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025