|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
Kirill D. Martinson, Alexander A. Murashkin, Artem A. Lobinsky, Danil D. Maltsev, Kezhen Qi, Jiaguo Yu, Oksana V. Almjasheva, Vadim I. Popkov, “Structural, magnetic and electrochemical studies on Zn$_x$Mg$_{1-x}$Fe$_2$O$_4$ nanoparticles prepared via solution combustion method”, Nanosystems: Physics, Chemistry, Mathematics, 15:2 (2024), 233–239 |
|
2023 |
2. |
Sergey S. Kozlov, Anna B. Nikolskaia, Olga K. Karyagina, Ekaterina K. Kosareva, Olga V. Alexeeva, Vasilisa I. Petrova, Oksana V. Almjasheva, Oleg I. Shevaleevskiy, “Planar perovskite solar cells with La$_2$NiMnO$_6$ buffer layer”, Nanosystems: Physics, Chemistry, Mathematics, 14:5 (2023), 584–589 |
|
2022 |
3. |
Denis D. Averkiev, Lyudmila L. Larina, Oleg I. Shevaleevskii, Oksana V. Almjasheva, “Formation of nanocrystalline particles on the basis of La$_2$(Ni,Mn,Fe)$_2$O$_6$ variable composition phases having a structure of double perovskite under conditions of solution combustion”, Nanosystems: Physics, Chemistry, Mathematics, 13:6 (2022), 655–661 |
4. |
Sergey S. Kozlov, Olga V. Alexeeva, Anna B. Nikolskaia, Oleg I. Shevaleevskiy, Denis D. Averkiev, Polina V. Kozhuhovskaya, Oksana V. Almjasheva, Liudmila L. Larina, “Double perovskite oxides La$_{2}$Ni$_{0.8}$Fe$_{0.2}$MnO$_{6}$ and La$_{2}$NiMnO$_{6}$ for inorganic perovskite solar cells”, Nanosystems: Physics, Chemistry, Mathematics, 13:3 (2022), 314–319 |
1
|
5. |
Oksana V. Almjasheva, Vadim I. Popkov, Olga V. Proskurina, Victor V. Gusarov, “Phase formation under conditions of self-organization of particle growth restrictions in the reaction system”, Nanosystems: Physics, Chemistry, Mathematics, 13:2 (2022), 164–180 |
5
|
|
2021 |
6. |
K. I. Barashok, V. V. Panchuk, V. G. Semenov, O. V. Almjasheva, R. Sh. Abiev, “Formation of cobalt ferrite nanopowders in an impinging-jets microreactor”, Nanosystems: Physics, Chemistry, Mathematics, 12:3 (2021), 303–310 |
1
|
7. |
A. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov, O. V. Almjasheva, V. V. Gusarov, O. I. Shevaleevskiy, “High performance tandem perovskite-silicon solar cells with very large bandgap photoelectrodes”, Nanosystems: Physics, Chemistry, Mathematics, 12:2 (2021), 246–251 |
8. |
S. S. Kozlov, L. L. Larina, A. B. Nikolskaia, O. V. Almjasheva, O. V. Proskurina, O. I. Shevaleevskii, “Solar cells based on complex oxides”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:6 (2021), 40–43 ; Tech. Phys. Lett., 47:4 (2021), 283–286 |
1
|
|
2020 |
9. |
A. I. Shuklina, A. V. Smirnov, B. A. Fedorov, S. A. Kirillova, O. V. Almjasheva, “Structure of nanoparticles in the ZrO$_{2}$-Y$_{2}$O$_{3}$ system, as obtained under hydrothermal conditions”, Nanosystems: Physics, Chemistry, Mathematics, 11:6 (2020), 729–738 |
3
|
10. |
A. S. Svinolupova, M. S. Lomakin, S. A. Kirillova, O. V. Almjasheva, “Formation of Bi$_{2}$WO$_{6}$ nanocrystals under conditions of hydrothermal treatment”, Nanosystems: Physics, Chemistry, Mathematics, 11:3 (2020), 338–344 |
1
|
|
2019 |
11. |
V. V. Zlobin, A. A. Krasilin, O. V. Almjasheva, “Effect of heterogeneous inclusions on the formation of TiO$_2$ nanocrystals in hydrothermal conditions”, Nanosystems: Physics, Chemistry, Mathematics, 10:6 (2019), 733–739 |
3
|
12. |
O. V. Almjasheva, N. A. Lomanova, V. I. Popkov, O. V. Proskurina, E. A. Tugova, V. V. Gusarov, “The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches”, Nanosystems: Physics, Chemistry, Mathematics, 10:4 (2019), 428–437 |
24
|
13. |
L. L. Larina, O. V. Alexeeva, O. V. Almjasheva, V. V. Gusarov, S. S. Kozlov, A. B. Nikolskaia, M. F. Vildanova, O. I. Shevaleevskiy, “Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells”, Nanosystems: Physics, Chemistry, Mathematics, 10:1 (2019), 70–75 |
5
|
|
2018 |
14. |
S. A. Kirillova, O. V. Almjasheva, V. V. Panchuk, V. G. Semenov, “Solid-phase interaction in ZrO$_2$–Fe$_2$O$_3$ nanocrystalline system”, Nanosystems: Physics, Chemistry, Mathematics, 9:6 (2018), 763–769 |
15. |
O. V. Almjasheva, A. A. Krasilin, V. V. Gusarov, “Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions”, Nanosystems: Physics, Chemistry, Mathematics, 9:4 (2018), 568–572 |
5
|
|
2017 |
16. |
O. V. Almjasheva, A. V. Garabadzhiu, Yu. V. Kozina, L. F. Litvinchuk, V. P. Dobritsa, “Biological effect of zirconium dioxide-based nanoparticles”, Nanosystems: Physics, Chemistry, Mathematics, 8:3 (2017), 391–396 |
3
|
|
2016 |
17. |
O. V. Almjasheva, “Formation and structural transformations of nanoparticles in the TiO$_2$–H$_2$O system”, Nanosystems: Physics, Chemistry, Mathematics, 7:6 (2016), 1031–1049 |
9
|
|
2015 |
18. |
V. I. Popkov, O. V. Almjasheva, V. N. Nevedomskiy, V. V. Sokolov, V. V. Gusarov, “Crystallization behavior and morphological features of YFeO$_3$ nanocrystallites obtainedby glycine-nitrate combustion”, Nanosystems: Physics, Chemistry, Mathematics, 6:6 (2015), 866–874 |
11
|
19. |
O. V. Almjasheva, “Heat-stimulated transformation of zirconium dioxide nanocrystals produced under hydrothermal conditions”, Nanosystems: Physics, Chemistry, Mathematics, 6:5 (2015), 697–703 |
6
|
|
2014 |
20. |
V. I. Popkov, O. V. Almjasheva, “Formation mechanism of YFeO$_{3}$ nanoparticles under the hydrothermal conditions”, Nanosystems: Physics, Chemistry, Mathematics, 5:5 (2014), 703–708 |
21. |
O. V. Almjasheva, V. V. Gusarov, “Metastable clusters and aggregative nucleation mechanism”, Nanosystems: Physics, Chemistry, Mathematics, 5:3 (2014), 405–416 |
|
2013 |
22. |
A. N. Bugrov, O. V. Almjasheva, “Effect of hydrothermal synthesis conditions on the morphology of ZrO$_{2}$ nanoparticles”, Nanosystems: Physics, Chemistry, Mathematics, 4:6 (2013), 810–815 |
|
2012 |
23. |
O. V. Almjasheva, A. Yu. Postnov, N. V. Mal'tseva, E. A. Vlasov, “Thermostable catalysts for oxidation of hydrogen based on ZrO$_{2}$–Al$_{2}$O$_{3}$ nanocomposite”, Nanosystems: Physics, Chemistry, Mathematics, 3:6 (2012), 75–82 |
24. |
A. Orlova, V. V. Sokolov, Yu. A. Kukushkina, O. V. Almjasheva, “C-ZrO$_2$ nanocomposite based on thermally expanded graphite”, Nanosystems: Physics, Chemistry, Mathematics, 3:5 (2012), 138–143 |
25. |
A. K. Vasilevskaya, O. V. Almjasheva, “Features of phase formation in the ZrO$_2$–TiO$_2$ system under hydrothermal conditions”, Nanosystems: Physics, Chemistry, Mathematics, 3:4 (2012), 75–81 |
26. |
I. S. Kucuk, O. V. Almjasheva, “Structural transformations in the ZrO$_2$ – Al$_2$O$_3$ nanocomposite by heating”, Nanosystems: Physics, Chemistry, Mathematics, 3:3 (2012), 123–129 |
|
2011 |
27. |
A. N. Bugrov, O. V. Almjasheva, “Formation of nanoparticles Cr$_2$O$_3$ in hydrothermal conditions”, Nanosystems: Physics, Chemistry, Mathematics, 2:4 (2011), 126–132 |
28. |
I. A. Nyapshaev, B. O. Shcherbin, A. V. Ankudinov, Yu. A. Kumzerov, V. N. Nevedomskiy, A. A. Krasilin, O. V. Almjasheva, V. V. Gusarov, “Mechanical properties of nanoscrolls based on Mg$_3$Si$_2$O$_5$(OH)$_4$”, Nanosystems: Physics, Chemistry, Mathematics, 2:2 (2011), 48–57 |
|
2010 |
29. |
O. V. Almjasheva, B. A. Fedorov, A. V. Smirnov, V. V. Gusarov, “Size, morphology and structure of the particles of zirconia nanopowder obtained under hydrothermal conditions”, Nanosystems: Physics, Chemistry, Mathematics, 1:1 (2010), 26–36 |
|
Organisations |
|
|
|
|