|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
P. G. Potseiko, E. A. Rovba, K. A. Smotritskii, “On the approximation of conjugate functions and their derivatives on the segment by partial sums of Fourier - Chebyshev series”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2024), 6–18 |
2. |
P. G. Potseiko, E. A. Rovba, “On rational approximations of the conjugate function on a segment by Abel–Poisson sums of Fourier–Chebyshev integral operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 9, 56–73 |
3. |
P. G. Potseiko, Y. A. Rovba, “Approximation of Riemann–Liouville type integrals on an interval by methods based on Fourier–Chebyshev sums”, Mat. Zametki, 116:1 (2024), 122–138 ; Math. Notes, 116:1 (2024), 104–118 |
4. |
P. G. Patseika, “On rational approximations of conjugate function on an interval by conjugate Vallée Poussin sums”, PFMT, 2024, no. 3(60), 59–70 |
5. |
P. G. Potseiko, E. A. Rovba, “Approximations of one singular integral on an interval by Fourier–Chebyshev rational integral operators”, Mat. Sb., 215:7 (2024), 96–137 ; Sb. Math., 215:7 (2024), 953–992 |
6. |
P. G. Potseiko, E. A. Rovba, “The Riesz–Zygmund sums of Fourier–Chebyshev rational integral operators and their approximation properties”, Sibirsk. Mat. Zh., 65:1 (2024), 140–163 |
7. |
P. G. Patseika, E. A. Rovba, “On approximations of Riemann–Liouville integral on a segement by rational Fourier–Chebyshev integral operators”, Proceedings of the Institute of Mathematics of the NAS of Belarus, 32:1 (2024), 38–56 |
8. |
P. G. Potseiko, Y. A. Rovba, “A Fejér rational integral operator on a closed interval and approximation of functions with a power-law singularity”, Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024), 170–189 |
|
2023 |
9. |
P. G. Potseiko, Y. A. Rovba, “Vallee Poussin sums of rational Fourier–Chebyshev integral operators and approximations of the Markov function”, Algebra i Analiz, 35:5 (2023), 183–208 |
1
|
10. |
P. G. Potseiko, Y. A. Rovba, “On Estimates of Uniform Approximations by Rational Fourier–Chebyshev Integral Operators for a Certain Choice of Poles”, Mat. Zametki, 113:6 (2023), 876–894 ; Math. Notes, 113:6 (2023), 815–830 |
2
|
11. |
P. G. Potseiko, “On rational conjugate Fejér sums on an interval and approximations of the conjugate function”, PFMT, 2023, no. 2(55), 56–67 |
1
|
12. |
P. G. Potseiko, Y. A. Rovba, “The de la Vallée Poussin sums of Fourier–Chebyshev rational integral operators and approximations to Poisson integrals on the segment”, Sibirsk. Mat. Zh., 64:1 (2023), 162–183 ; Siberian Math. J., 64:1 (2023), 137–156 |
1
|
|
2022 |
13. |
P. G. Potseiko, Ye. A. Rovba, “Conjugate rational Foutier–Chebyshev operator and its approximation properties”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 3, 44–60 ; Russian Math. (Iz. VUZ), 66:3 (2022), 35–49 |
8
|
14. |
P. G. Patseika, Y. A. Rovba, “On rational approximations of the Markov function on the segment by the Fejer sums with a fixed number of poles”, Tr. Inst. Mat., 30:1-2 (2022), 63–83 |
|
2021 |
15. |
P. G. Potseiko, Y. A. Rovba, “On rational Abel – Poisson means on a segment and approximations of Markov functions”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2021), 6–24 |
2
|
16. |
P. G. Potseiko, Y. A. Rovba, “Approximations on classes of Poisson integrals by Fourier–Chebyshev rational integral operators”, Sibirsk. Mat. Zh., 62:2 (2021), 362–386 ; Siberian Math. J., 62:2 (2021), 292–312 |
12
|
|
2020 |
17. |
P. G. Potseiko, Y. A. Rovba, K. A. Smotritskii, “On one rational integral operator of Fourier – Chebyshev type and approximation of Markov functions”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2020), 6–27 |
11
|
18. |
Y. A. Rovba, P. G. Patseika, “Approximations of conjugate functions by partial sums of conjugate Fourier series with respect to a certain system of Chebyshev – Markov algebraic fractions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 9, 68–84 ; Russian Math. (Iz. VUZ), 64:9 (2020), 61–75 |
6
|
19. |
Y. A. Rovba, P. G. Potseiko, “On Rational Approximation of Markov Functions by Partial Sums of Fourier Series on a Chebyshev–Markov System”, Mat. Zametki, 108:4 (2020), 572–587 ; Math. Notes, 108:4 (2020), 566–578 |
2
|
20. |
Y. A. Rouba, P. G. Patseika, “Riesz – Zigmund means of rational Fourier – Chebyshev seriesand approximations of the function $|x|^s$”, Tr. Inst. Mat., 28:1-2 (2020), 74–90 |
|
2019 |
21. |
P. G. Potseiko, Y. A. Rovba, “Fejer means of rational Fourier – Chebyshev series and approximation of function $|x|^{s}$”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2019), 18–34 |
5
|
|
|
|
2021 |
22. |
Y. A. Rovba, P. G. Patseika, “Letter to the editors”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1, 97–99 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|