Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 9, Pages 68–84
DOI: https://doi.org/10.26907/0021-3446-2020-9-68-84
(Mi ivm9612)
 

This article is cited in 6 scientific papers (total in 6 papers)

Approximations of conjugate functions by partial sums of conjugate Fourier series with respect to a certain system of Chebyshev – Markov algebraic fractions

Y. A. Rovba, P. G. Patseika

Yanka Kupala State University of Grodno, 22 Ozheshko str., Grodno, 230023 Republic of Belarus
Full-text PDF (455 kB) Citations (6)
References:
Abstract: We investigate approximative properties of partial sums of conjugate Fourier series with respect to one system of Chebyshev – Markov algebraic fractions. The main results of previously known works on approximations of conjugate functions in polynomial and rational cases are presented. One system of algebraic fractions Chebyshev – Markov is introduced and the construction of the conjugate rational Fourier – Chebyshev series corresponding to it is carried out. An integral representation of the conjugate function approximations by partial sums of the constructed conjugate series is found. The approximation of functions conjugate to $|x|^s, 1 < s < 2,$ on the interval $[-1,1]$ by partial sums of conjugate rational Fourier – Chebyshev series is studied. The integral representation of approximations, estimates of approximations by the studied method depending on the position of the point $x$ on the interval, and their asymptotic expressions for $n \to \infty$ are found. The optimal value of the parameter at which the deviation of partial sums of the conjugate rational Fourier – Chebyshev series from the conjugate function $|x|^s, 1 < s < 2,$ on the interval $[-1,1]$ have the highest rate of tendency to zero is established. As a consequence of the results obtained, the problem of approximations of a function conjugate to $|x|^s, s > 1,$ by partial sums of the conjugate Fourier series on the Chebyshev polynomial system of the first kind is studied in detail.
Keywords: Chebyshev – Markov algebraic fraction, conjugate function, partial sum of the Fourier – Chebyshev series, exact estimate, asymptotic method.
Received: 01.10.2019
Revised: 12.12.2019
Accepted: 18.12.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 9, Pages 61–75
DOI: https://doi.org/10.3103/S1066369X20090066
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: Y. A. Rovba, P. G. Patseika, “Approximations of conjugate functions by partial sums of conjugate Fourier series with respect to a certain system of Chebyshev – Markov algebraic fractions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 9, 68–84; Russian Math. (Iz. VUZ), 64:9 (2020), 61–75
Citation in format AMSBIB
\Bibitem{RovPot20}
\by Y.~A.~Rovba, P.~G.~Patseika
\paper Approximations of conjugate functions by partial sums of conjugate Fourier series with respect to a certain system of Chebyshev~--~Markov algebraic fractions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 9
\pages 68--84
\mathnet{http://mi.mathnet.ru/ivm9612}
\crossref{https://doi.org/10.26907/0021-3446-2020-9-68-84}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 9
\pages 61--75
\crossref{https://doi.org/10.3103/S1066369X20090066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000578069000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092667649}
Linking options:
  • https://www.mathnet.ru/eng/ivm9612
  • https://www.mathnet.ru/eng/ivm/y2020/i9/p68
    Erratum
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:165
    Full-text PDF :67
    References:33
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024