Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 1, Pages 162–183
DOI: https://doi.org/10.33048/smzh.2023.64.115
(Mi smj7754)
 

This article is cited in 1 scientific paper (total in 1 paper)

The de la Vallée Poussin sums of Fourier–Chebyshev rational integral operators and approximations to Poisson integrals on the segment

P. G. Potseiko, Y. A. Rovba

Yanka Kupala State University of Grodno
Full-text PDF (436 kB) Citations (1)
References:
Abstract: We study the rational approximations of the functions represented by Poisson integrals on the segment $[-1,1]$ with constraints on the number of geometrically distinct poles of the approximant. As the approximation method we choose the de la Vallée Poussin sums of Fourier–Chebyshev rational integral operators. For the method of rational approximation we establish integral representations for approximations and upper bounds for uniform approximations on the classes of Poisson integrals on $[-1,1]$. We consider the classes of Poisson integrals whose boundary function has a power singularity on $[-1,1]$. In this case we find upper bounds for pointwise and uniform approximations and an asymptotic expression for a majorant of uniform approximation. We study approximations by the rational de la Vallée Poussin sums with two geometrically distinct poles and establish the values of the parameters ensuring the best uniform rational approximations by this method. We show that in this case the majorants of the best uniform approximations decay faster than the corresponding polynomial analogs. As a corollary, we consider the approximations of the functions defined by Poisson integrals on the segment by the de la Vallée Poussin sums of the Fourier–Chebyshev polynomial series.
Keywords: Poisson integral, de la Vallée Poussin sum, rational integral operator, Fourier series, pointwise and uniform approximation, asymptotic estimate, best constant.
Funding agency Grant number
ГПНИ "Конвергенция-2020" ,20162269
The authors were supported by the Fundamental Research Program “Convergence 2020” (Grant no.В 20162269).
Received: 11.05.2022
Revised: 27.05.2022
Accepted: 15.06.2022
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 1, Pages 137–156
DOI: https://doi.org/10.1134/S0037446623010159
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: P. G. Potseiko, Y. A. Rovba, “The de la Vallée Poussin sums of Fourier–Chebyshev rational integral operators and approximations to Poisson integrals on the segment”, Sibirsk. Mat. Zh., 64:1 (2023), 162–183; Siberian Math. J., 64:1 (2023), 137–156
Citation in format AMSBIB
\Bibitem{PotRov23}
\by P.~G.~Potseiko, Y.~A.~Rovba
\paper The de~la~Vall\'ee Poussin sums of Fourier--Chebyshev rational integral operators and approximations to Poisson integrals on the segment
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 1
\pages 162--183
\mathnet{http://mi.mathnet.ru/smj7754}
\crossref{https://doi.org/10.33048/smzh.2023.64.115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567654}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 1
\pages 137--156
\crossref{https://doi.org/10.1134/S0037446623010159}
Linking options:
  • https://www.mathnet.ru/eng/smj7754
  • https://www.mathnet.ru/eng/smj/v64/i1/p162
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024