|
|
Publications in Math-Net.Ru |
Citations |
|
2019 |
1. |
G. G. Akniev, R. M. Gadzhimirzaev, “A numerical method for solving the Cauchy problem for ODEs using a system of polynomials generated by a system of modified Laguerre polynomials”, Daghestan Electronic Mathematical Reports, 2019, no. 12, 13–24 |
2. |
G. G. Akniev, “Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums”, Izv. Saratov Univ. Math. Mech. Inform., 19:1 (2019), 4–15 |
1
|
3. |
G. G. Akniyev, “Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions”, Probl. Anal. Issues Anal., 8(26):3 (2019), 3–15 |
|
2018 |
4. |
G. G. Akniev, R. M. Gadzhimirzaev, “Fast algorithm for finding approximate solutions to the Cauchy problem for ODE”, Daghestan Electronic Mathematical Reports, 2018, no. 10, 41–49 |
5. |
G. G. Akniev, R. M. Gadzhimirzaev, “Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines”, Daghestan Electronic Mathematical Reports, 2018, no. 9, 1–6 |
1
|
6. |
G. G. Akniev, “Approximation properties of dicrete Fourier sums for some piecewise linear functions”, Izv. Saratov Univ. Math. Mech. Inform., 18:1 (2018), 4–16 |
1
|
|
2017 |
7. |
G. G. Akniev, “Approximation of piecewise linear functions by discrete Fourier sums”, Daghestan Electronic Mathematical Reports, 2017, no. 8, 21–26 |
8. |
G. G. Akniyev, “Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials”, Probl. Anal. Issues Anal., 6(24):2 (2017), 3–24 |
2
|
|
2016 |
9. |
G. G. Akniev, “Approximation properties of Fourier sums for $2\pi$-periodic piecewise linear continuous functions”, Daghestan Electronic Mathematical Reports, 2016, no. 5, 13–19 |
1
|
|
2014 |
10. |
I. I. Sharapudinov, M. S. Sultanakhmedov, T. N. Shakh-Emirov, T. I. Sharapudinov, M. G. Magomed-Kasumov, G. G. Akniev, R. M. Gadzhimirzaev, “On the identification of the parameters of linear systems using Chebyshev polynomials of the first kind and Chebyshev polynomials orthogonal on a uniform grid”, Daghestan Electronic Mathematical Reports, 2014, no. 2, 1–32 |
11. |
I. I. Sharapudinov, G. G. Akniev, “Discrete Transform with Stick Property Based on $\{\sin x\sin kx\}$ and Second Kind Chebyshev Polynomials Systems”, Izv. Saratov Univ. Math. Mech. Inform., 14:4(1) (2014), 413–422 |
|
Organisations |
|
|
|
|