Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2018, Issue 9, Pages 1–6
DOI: https://doi.org/10.31029/demr.9.1
(Mi demr51)
 

This article is cited in 1 scientific paper (total in 1 paper)

Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines

G. G. Akniev, R. M. Gadzhimirzaev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
Full-text PDF (383 kB) Citations (1)
References:
Abstract: In this paper we developed an algorithm for numerical computation of polynomials by the functions $\xi_{1,0}(t)=1,\ \xi_{1,1}(t)=t,\ \xi_{1,n+1}(t)=\frac{\sqrt{2}}{\pi n}\sin(\pi nt),\ (n=1,2,\ldots)$ on the grid $\{t_j=\frac{j}{N}\}_{j=0}^{N-1}$. These functions are orthogonal on Sobolev with respect to the inner product $\langle f, g\rangle=f(0)g(0)+\int_0^1f'(t)g'(t)dt$ and generated by functions $\xi_0(x)=1,\ \{\xi_n(t)=\sqrt{2}\cos(\pi nt)\}_{n=1}^\infty$. The algorithm is based on the fast Fourier transform.
Keywords: fast Fourier transform, discrete sine transform, inner product of Sobolev type, Sobolev orthogonal function.
Received: 27.03.2018
Revised: 30.05.2018
Accepted: 31.05.2018
Document Type: Article
UDC: 519.688
Language: Russian
Citation: G. G. Akniev, R. M. Gadzhimirzaev, “Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines”, Daghestan Electronic Mathematical Reports, 2018, no. 9, 1–6
Citation in format AMSBIB
\Bibitem{AknGad18}
\by G.~G.~Akniev, R.~M.~Gadzhimirzaev
\paper Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines
\jour Daghestan Electronic Mathematical Reports
\yr 2018
\issue 9
\pages 1--6
\mathnet{http://mi.mathnet.ru/demr51}
\crossref{https://doi.org/10.31029/demr.9.1}
Linking options:
  • https://www.mathnet.ru/eng/demr51
  • https://www.mathnet.ru/eng/demr/y2018/i9/p1
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :17
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024