Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2018, Volume 18, Issue 1, Pages 4–16
DOI: https://doi.org/10.18500/1816-9791-2018-18-1-4-16
(Mi isu740)
 

This article is cited in 1 scientific paper (total in 1 paper)

Scientific Part
Mathematics

Approximation properties of dicrete Fourier sums for some piecewise linear functions

G. G. Akniev

Dagestan Scientific Center RAS, 45, M. Gadzhieva Str., Makhachkala, Russia, 367025
Full-text PDF (257 kB) Citations (1)
References:
Abstract: Let $N$ be a natural number greater than $1$. We select $N$ uniformly distributed points $t_k = 2\pi k / N$ $(0 \leq k \leq N - 1)$ on $[0,2\pi]$. Denote by $L_{n,N}(f)=L_{n,N}(f,x)$ $(1\leq n\leq N/2)$ the trigonometric polynomial of order $n$ possessing the least quadratic deviation from $f$ with respect to the system $\{t_k\}_{k=0}^{N-1}$. In other words, the greatest lower bound of the sums $\sum_{k=0}^{N-1}|f(t_k)-T_n(t_k)|^2$ on the set of trigonometric polynomials $T_n$ of order $n$ is attained by $L_{n,N}(f)$. In the present article the problem of function approximation by the polynomials $L_{n,N}(f,x)$ is considered. Using some example functions we show that the polynomials $L_{n,N}(f,x)$ uniformly approximate a piecewise-linear continuous function with a convergence rate $O(1/n)$ with respect to the variables $x \in \mathbb{R}$ and $1 \leq n \leq N/2$. These polynomials also uniformly approximate the same function with a rate $O(1/n^2)$ outside of some neighborhood of function's “crease” points. Also we show that the polynomials $L_{n,N}(f,x)$ uniformly approximate a piecewise-linear discontinuous function with a rate $O(1/n)$ with respect to the variables $x$ and $1 \leq n \leq N/2$ outside some neighborhood of discontinuity points. Special attention is paid to approximation of $2\pi$-periodic functions $f_1$ and $f_2$ by the polynomials $L_{n,N}(f,x)$, where $f_1(x)=|x|$ and $f_2(x)=\mathrm{sign }\, x$ for $x \in [-\pi,\pi]$. For the first function $f_1$ we show that instead of the estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c\ln n/n$ which follows from the well-known Lebesgue inequality for the polynomials $L_{n,N}(f,x)$ we found an exact order estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c/n$ ($x \in \mathbb{R}$) which is uniform relative to $1 \leq n \leq N/2$. Moreover, we found a local estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c(\varepsilon)/n^2$ ($\left|x - \pi k\right| \geq \varepsilon$) which is also uniform relative to $1 \leq n \leq N/2$. For the second function $f_2$ we found only a local estimate $\left|f_{2}(x)-L_{n,N}(f_{2},x)\right| \leq c(\varepsilon)/n$ ($\left|x - \pi k\right| \geq \varepsilon$) which is uniform relative to $1 \leq n \leq N/2$. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
Key words: function approximation, trigonometric polynomials, Fourier series.
Bibliographic databases:
Document Type: Article
UDC: 517.521.2
Language: Russian
Citation: G. G. Akniev, “Approximation properties of dicrete Fourier sums for some piecewise linear functions”, Izv. Saratov Univ. Math. Mech. Inform., 18:1 (2018), 4–16
Citation in format AMSBIB
\Bibitem{Akn18}
\by G.~G.~Akniev
\paper Approximation properties of dicrete Fourier sums for some piecewise linear functions
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2018
\vol 18
\issue 1
\pages 4--16
\mathnet{http://mi.mathnet.ru/isu740}
\crossref{https://doi.org/10.18500/1816-9791-2018-18-1-4-16}
\elib{https://elibrary.ru/item.asp?id=35647726}
Linking options:
  • https://www.mathnet.ru/eng/isu740
  • https://www.mathnet.ru/eng/isu/v18/i1/p4
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024