Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 344, Pages 203–239 (Mi znsl107)  

This article is cited in 5 scientific papers (total in 5 papers)

Polynomial-time computation of the degree of a dominant morphism in zero characteristic. III

A. L. Chistov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (386 kB) Citations (5)
References:
Abstract: Consider a projective algebraic variety WW which is an irreducible component of the set of all common zeros of a family of homogeneous polynomials of degrees less than dd in n+1n+1 variables in zero characteristic. Consider a dominant rational morphism from WW to W given by homogeneous polynomials of degree d. We suggest algorithms for constructing objects in general position related to this morphism. These algorithms are deterministic and polynomial in (dd)n and the size of the input.
Received: 18.03.2007
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 147, Issue 6, Pages 7234–7250
DOI: https://doi.org/10.1007/s10958-007-0540-4
Bibliographic databases:
UDC: 518.5, 513.6
Language: Russian
Citation: A. L. Chistov, “Polynomial-time computation of the degree of a dominant morphism in zero characteristic. III”, Representation theory, dynamical systems, combinatorial methods. Part XV, Zap. Nauchn. Sem. POMI, 344, POMI, St. Petersburg, 2007, 203–239; J. Math. Sci. (N. Y.), 147:6 (2007), 7234–7250
Citation in format AMSBIB
\Bibitem{Chi07}
\by A.~L.~Chistov
\paper Polynomial-time computation of the degree of a
dominant morphism in zero characteristic.~III
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XV
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 344
\pages 203--239
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2432172}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 147
\issue 6
\pages 7234--7250
\crossref{https://doi.org/10.1007/s10958-007-0540-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36148952488}
Linking options:
  • https://www.mathnet.ru/eng/znsl107
  • https://www.mathnet.ru/eng/znsl/v344/p203
    Cycle of papers
    This publication is cited in the following 5 articles:
    1. A. L. Chistov, “A deterministic polynomial-time algorithm for the first Bertini theorem. III”, J. Math. Sci. (N. Y.), 209:6 (2015), 1005–1019  mathnet  crossref
    2. A. L. Chistov, “A deterministic polynomial-time algorithm for the first Bertini theorem. II”, J. Math. Sci. (N. Y.), 200:6 (2014), 769–784  mathnet  crossref
    3. A. L. Chistov, “A deterministic polynomial-time algorithm for the first Bertini theorem. I”, J. Math. Sci. (N. Y.), 196:2 (2014), 223–243  mathnet  crossref  mathscinet
    4. A. L. Chistov, “Polynomial-time algorithms for a new model of representation of algebraic varieties (in characteristic zero)”, J. Math. Sci. (N. Y.), 174:1 (2011), 71–89  mathnet  crossref
    5. A. L. Chistov, “Polynomial-time computation of the degree of a dominant morphism in zero characteristic. II”, J. Math. Sci. (N. Y.), 138:3 (2006), 5733–5752  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :69
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025