Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 307, Pages 189–235 (Mi znsl845)  

This article is cited in 8 scientific papers (total in 8 papers)

Polynomial-time computation of the degree of a dominant morphism in characteristic zero. I

A. L. Chistov

St. Petersburg Institute for Informatics and Automation of RAS
Full-text PDF (427 kB) Citations (8)
References:
Abstract: Consider a projective algebraic variety $W$ that is an irreducible component of the set of all common zeros of a family of homogeneous polynomials of degrees less than $d$ in $n+1$ variables over a field of zero characteristic. We show how to compute the degree of a dominant rational morphism from $W$ to $W'$ with $\dim W=\dim W'$. The morphism is given by homogeneous polynomials of degree $d'$. This algorithm is deterministic and polynomial in $(dd')^n$ and the size of input.
Received: 25.12.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 131, Issue 2, Pages 5547–5568
DOI: https://doi.org/10.1007/s10958-005-0426-2
Bibliographic databases:
UDC: 518.5+513.6
Language: Russian
Citation: A. L. Chistov, “Polynomial-time computation of the degree of a dominant morphism in characteristic zero. I”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Zap. Nauchn. Sem. POMI, 307, POMI, St. Petersburg, 2004, 189–235; J. Math. Sci. (N. Y.), 131:2 (2005), 5547–5568
Citation in format AMSBIB
\Bibitem{Chi04}
\by A.~L.~Chistov
\paper Polynomial-time computation of the degree of a~dominant morphism in characteristic zero.~I
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~X
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 307
\pages 189--235
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl845}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2050693}
\zmath{https://zbmath.org/?q=an:1078.14538}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 131
\issue 2
\pages 5547--5568
\crossref{https://doi.org/10.1007/s10958-005-0426-2}
Linking options:
  • https://www.mathnet.ru/eng/znsl845
  • https://www.mathnet.ru/eng/znsl/v307/p189
    Cycle of papers
    This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :69
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024