|
Differential Equations
On one generalization of Bessel function
N. A. Virchenko, M. A. Chetvertak National Technical University of Ukraine "Kiev Polytechnic Institute", Kiev, 03056, Ukraine
(published under the terms of the Creative Commons Attribution 4.0 International License)
Abstract:
In this paper the generalized Bessel function $J_{\mu ,\omega } ( x )$ is introduced. The function $J_{\mu ,\omega } ( x )$ is given as one solution of the following differential equation: $$ x^2{y}''+x{y}'+\left( {x-\mu ^2} \right)\left( {x+\omega ^2} \right)y=0, \quad \mu , \omega \notin \mathbb Z. $$ The representation of the $J_{\mu ,\omega } ( x )$ by the power series is given. The theorem on integral representations of the function $J_{\mu ,\omega } ( x )$ is established. The main properties of the function $J_{\mu ,\omega } ( x )$ are studied. The integral transforms of Bessel type with the function $J_{\mu ,\omega } ( x )$ is constructed. Formula of inversion of this transform is received.
Keywords:
Bessel function, hypergeometric function, integral transform.
Original article submitted 03/XI/2014 revision submitted – 26/XI/2014
Citation:
N. A. Virchenko, M. A. Chetvertak, “On one generalization of Bessel function”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014), 16–21
Linking options:
https://www.mathnet.ru/eng/vsgtu1361 https://www.mathnet.ru/eng/vsgtu/v137/p16
|
|