Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, Issue 4(37), Pages 22–32
DOI: https://doi.org/10.14498/vsgtu1348
(Mi vsgtu1348)
 

This article is cited in 3 scientific papers (total in 3 papers)

Differential Equations

On a class of nonlocal problems for hyperbolic equations with degeneration of type and order

O. A. Repinab, S. K. Kumykovac

a Samara State Technical University
b Samara State University of Economics
c Kabardino-Balkar State University, Nal'chik
Full-text PDF (733 kB) Citations (3)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Nonlocal problems for the second order hyperbolic model equation were studied in the characteristic area. The type and order of equations degenerate on the same line $ y = 0 $. Nonlocal condition is given by means of fractional integro-differentiation of arbitrary order on the boundary. Nonlocal condition connects fractional derivatives and integrals of the desired solution. For different values of order operators of fractional integro-differentiation within the boundary condition the unique solvability of the considered problems was proved or non-uniqueness of the solution was estimated.
Keywords: nonlocal boundary value problem, fractional integro-differentiation operators, Cauchy problem, second kind Volterra integral equation, Abel integral equation.
Original article submitted 23/X/2014
revision submitted – 05/XI/2014
Bibliographic databases:
Document Type: Article
UDC: 517.956.326
MSC: 35M12
Language: Russian
Citation: O. A. Repin, S. K. Kumykova, “On a class of nonlocal problems for hyperbolic equations with degeneration of type and order”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014), 22–32
Citation in format AMSBIB
\Bibitem{RepKum14}
\by O.~A.~Repin, S.~K.~Kumykova
\paper On a class of nonlocal problems for hyperbolic equations with degeneration of type and order
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 4(37)
\pages 22--32
\mathnet{http://mi.mathnet.ru/vsgtu1348}
\crossref{https://doi.org/10.14498/vsgtu1348}
\zmath{https://zbmath.org/?q=an:06968930}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1348
  • https://www.mathnet.ru/eng/vsgtu/v137/p22
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:421
    Full-text PDF :217
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024