Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, Issue 4(37), Pages 7–15
DOI: https://doi.org/10.14498/vsgtu1349
(Mi vsgtu1349)
 

This article is cited in 3 scientific papers (total in 3 papers)

Differential Equations

Cauchy Problem For the System Of the General Hyperbolic Differential Equations Of the Forth Order With Nonmultiple Characteristics

A. A. Andreeva, J. O. Yakovlevab

a Samara State Technical University, Samara, 443100, Russian Federation
b Samara State University, Samara, 443011, Russian Federation
Full-text PDF (685 kB) Citations (3)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We consider the Cauchy problem for the hyperbolic differential equation of the forth order with nonmultiple characteristics. We generalize this problem from the similar Cauchy problem for the hyperbolic differential equation of the third order with nonmultiple characteristics which solution was constructed as an analogue of D'Alembert formula. We obtain the regular solution of the Cauchy problem for the hyperbolic differential equation of the forth order with nonmultiple characteristics in an explicit form. This solution is also an analogue of D'Alembert formula. The existence and uniqueness theorem for the regular solution of the Cauchy problem for the hyperbolic differential equation of the forth order with nonmultiple characteristics is formulated as the result of the research. In the paper we consider the Cauchy problem for the system of the general hyperbolic differential equations of the forth order with nonmultiple characteristics.
Keywords: hyperbolic differential equation of the forth order, nonmultiple characteristics, Cauchy problem, D'Alembert formula, system of general hyperbolic differential equations of the forth order.
Original article submitted 23/X/2014
revision submitted – 15/XI/2014
Bibliographic databases:
Document Type: Article
UDC: 517.956.3
MSC: 35L25
Language: Russian
Citation: A. A. Andreev, J. O. Yakovleva, “Cauchy Problem For the System Of the General Hyperbolic Differential Equations Of the Forth Order With Nonmultiple Characteristics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014), 7–15
Citation in format AMSBIB
\Bibitem{AndYak14}
\by A.~A.~Andreev, J.~O.~Yakovleva
\paper Cauchy Problem For the System Of the General Hyperbolic Differential Equations
Of the Forth Order With Nonmultiple Characteristics
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 4(37)
\pages 7--15
\mathnet{http://mi.mathnet.ru/vsgtu1349}
\crossref{https://doi.org/10.14498/vsgtu1349}
\zmath{https://zbmath.org/?q=an:06968928}
\elib{https://elibrary.ru/item.asp?id=23464547}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1349
  • https://www.mathnet.ru/eng/vsgtu/v137/p7
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:648
    Full-text PDF :293
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024