Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 1, Pages 125–142 (Mi tvp3295)  

On the strong law of large numbers for random quadratic forms

T. Mikosch

RUG Groningen, Fac. Maths and Phys., Groningen, Netherlands
Abstract: The paper establishes strong laws of large numbers for the quadratic forms $Q_n(X,X)=\sum_{i=1}^n\sum_{j=1}^na_{ij}X_iX_j$ and the bilinear forms $Q_n(X,Y)=\sum_{i=1}^n\sum_{j=1}^na_{ij}X_iY_j$, where $X=(X_n)$ is a sequence of independent random variables and $Y=(Y_n)$ is an independent copy of it. In the case of i.i.d. symmetric $p$-stable random variables $X_n$ we derive necessary and sufficient conditions for the strong laws of $Q_n(X,X)$ and $Q_n(X,Y)$ for a given nondecreasing sequence $(b_n)$ of normalizing constants. For these classes of variables $(X_n)$ the strong laws $\lim b_n^{-1}Q_n(X,X)=0$ a.s. and $\lim b_n^{-1}Q_n(X,Y)=0$ a.s. are shown to be equivalent provided that $a_{ii}=0$ for all $i$.
Keywords: quadratic forms, bilinear forms, strong law of large numbers, Prokhorov-type characterization, p-stable random variables, domains of partial attraction, tail probabilities.
Received: 08.05.1991
English version:
Theory of Probability and its Applications, 1995, Volume 40, Issue 1, Pages 76–91
DOI: https://doi.org/10.1137/1140005
Bibliographic databases:
Language: English
Citation: T. Mikosch, “On the strong law of large numbers for random quadratic forms”, Teor. Veroyatnost. i Primenen., 40:1 (1995), 125–142; Theory Probab. Appl., 40:1 (1995), 76–91
Citation in format AMSBIB
\Bibitem{Mik95}
\by T.~Mikosch
\paper On the strong law of large numbers for random quadratic forms
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 1
\pages 125--142
\mathnet{http://mi.mathnet.ru/tvp3295}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346735}
\zmath{https://zbmath.org/?q=an:0844.60011}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 1
\pages 76--91
\crossref{https://doi.org/10.1137/1140005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UH07100005}
Linking options:
  • https://www.mathnet.ru/eng/tvp3295
  • https://www.mathnet.ru/eng/tvp/v40/i1/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024