Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 1, Pages 143–158 (Mi tvp3296)  

This article is cited in 3 scientific papers (total in 3 papers)

Central limit theorem of the perturbed sample quantile for a sequence of $m$-dependent nonstationary random process

Shan Sun

Dept. of Mathematics, Indiana University, Indiana, USA
Full-text PDF (641 kB) Citations (3)
Abstract: Given a sequence $X_i$, $i\ge1$, of $m$-dependent nonstationary random variables, the usual perturbed empirical distribution function is $\widehat F_n(x)=n^{-1}\sum_{i=1}^nK_n(x-X_i)$, where $K_n$, $n\ge1$, is a sequence of continuous distribution functions converging weakly to the distribution function with a unit mass at zero. In this paper, we study the perturbed sample quantile estimator $\hat\xi_{np}=\inf\{x\in\mathbf{R},\widehat F_n(x)\ge p\}$, $0<p<1$, based on a kernel $k$ associated with $K_n$ and a sequence of window-widths $a_n>0$. Under suitable assumptions, we prove the weak as well as the strong consistency of $\hat\xi_{np}$ and also provide sufficient conditions for the asymptotic normality of $\hat\xi_{np}$. Our central limit theorem for $\hat\xi_{np}$ generalizes a result of Sen [15] and also extends the results of Nadarya [8] and Ralescu and Sun [12].
Keywords: perturbed sample quantile, central limit theorem, $m$-dependent nonstationary random variables, weak and strong consistency, perturbed empirical distribution functions.
Received: 29.08.1991
English version:
Theory of Probability and its Applications, 1995, Volume 40, Issue 1, Pages 116–129
DOI: https://doi.org/10.1137/1140008
Bibliographic databases:
Language: English
Citation: Shan Sun, “Central limit theorem of the perturbed sample quantile for a sequence of $m$-dependent nonstationary random process”, Teor. Veroyatnost. i Primenen., 40:1 (1995), 143–158; Theory Probab. Appl., 40:1 (1995), 116–129
Citation in format AMSBIB
\Bibitem{Sha95}
\by Shan Sun
\paper Central limit theorem of the perturbed sample quantile for a~sequence of $m$-dependent nonstationary random process
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 1
\pages 143--158
\mathnet{http://mi.mathnet.ru/tvp3296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346736}
\zmath{https://zbmath.org/?q=an:0839.60026}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 1
\pages 116--129
\crossref{https://doi.org/10.1137/1140008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UH07100008}
Linking options:
  • https://www.mathnet.ru/eng/tvp3296
  • https://www.mathnet.ru/eng/tvp/v40/i1/p143
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024