Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 1, Pages 111–124 (Mi tvp3294)  

This article is cited in 3 scientific papers (total in 3 papers)

Stochastic Sobolev spaces and their boundary trace

Yu. A. Rozanov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (664 kB) Citations (3)
Abstract: This is a short self-contained introduction to stochastic Sobolev spaces. The well-known Sobolev spaces Wp2(T) represent essentially smooth functions which are characterized as being in L2(T) with all their generalized derivatives kuL2(T), |k|p. TRd is the region considered. This kind of characterization of random u=ξ is of no interest, since generalized random functions typically are very chaotic Schwartz distributions, and their primary characterization is supposed to be given in terms of a probability distribution (e.g., by a characteristic functional) or in terms of a covariance
E(x,ξ)(y,ξ),x,yC0(T),
which itself is determined by the variance

What can be common for the deterministic case and the stochastic case is the continuity of \|(x,\xi)\| with respect to the corresponding Sobolev norm \|x\|_{-p}. Therefore, we introduce stochastic Sobolev spaces \mathbf W_2^p(T). These spaces contain as the most known representatives random functions such as Brownian motion, Markov free field, Lévy Brownian motion, etc. It is shown, in particular, that the variety of generalized random functions which form a stochastic Sobolev space \mathbf W_2^p(T) in a region T\subseteq\mathbf R^d is represented as a direct product
\xi=L^*L\xi\otimes\prod_{k=0}^{p-1}\otimes\xi^{(k)}
with arbitrary elements L^*L\xi\in\mathbf W_2^{-p}(T), \xi^{(k)}\in\mathbf W_2^{p-k-1/2}(\Gamma), k=0,\dots,p-1, where \xi^{(k)}, k=0,\dots,p-1, serve as the kth generalized derivatives of the corresponding \xi\in\mathbf W_2^p(T) along a non-tangent vector field on the boundary \Gamma=\partial T. The differential operator L involved,
L=\sum_{|k|\le p}a_k\partial^k,
can be any non-degenerate elliptic operator.
Keywords: generalized random functions, stochastic Sobolev spaces, a generalized boundary trace, embedding theorems.
Received: 22.03.1993
English version:
Theory of Probability and its Applications, 1995, Volume 40, Issue 1, Pages 104–115
DOI: https://doi.org/10.1137/1140007
Bibliographic databases:
Language: Russian
Citation: Yu. A. Rozanov, “Stochastic Sobolev spaces and their boundary trace”, Teor. Veroyatnost. i Primenen., 40:1 (1995), 111–124; Theory Probab. Appl., 40:1 (1995), 104–115
Citation in format AMSBIB
\Bibitem{Roz95}
\by Yu.~A.~Rozanov
\paper Stochastic Sobolev spaces and their boundary trace
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 1
\pages 111--124
\mathnet{http://mi.mathnet.ru/tvp3294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346734}
\zmath{https://zbmath.org/?q=an:0842.60003}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 1
\pages 104--115
\crossref{https://doi.org/10.1137/1140007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UH07100007}
Linking options:
  • https://www.mathnet.ru/eng/tvp3294
  • https://www.mathnet.ru/eng/tvp/v40/i1/p111
  • This publication is cited in the following 3 articles:
    1. Lasanen S., Roininen L., Huttunen J.M.J., “Elliptic Boundary Value Problems With Gaussian White Noise Loads”, Stoch. Process. Their Appl., 128:11 (2018), 3607–3627  crossref  mathscinet  zmath  isi  scopus
    2. Y. Rozanov, F. Sansò, Lecture Notes in Earth Sciences, 65, Geodetic Boundary Value Problems in View of the One Centimeter Geoid, 1997, 67  crossref
    3. S. A. Albeverio, T. J. Lyons, Yu. A. Rozanov, “On boundary conditions for stochastic evolution equations with an extremally chaotic source”, Sb. Math., 186:12 (1995), 1693–1709  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :87
    First page:21
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025