Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 4, Pages 691–711
DOI: https://doi.org/10.4213/tvp20
(Mi tvp20)
 

Asymptotic properties of multidimensional stable densities and asymmetric problems of large deviations

A. V. Nagaev

Nikolaus Copernicus University
References:
Abstract: The paper considers asymptotic properties of the so-called asymmetric multidimensional stable distributions with the property that the minimal convex conus generated by a support of Poisson spectral measure does not coincide with $\mathbf R^d$. The density of such a distribution along some directions can decrease extremely quickly. Using methods of the conjugate Cramér distributions we find the exact asymptotic and write an asymptotic series which describes a character of the decrease.
Received: 15.09.2004
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 4, Pages 626–644
DOI: https://doi.org/10.1137/S0040585X97982669
Bibliographic databases:
UDC: $\alpha$-stable distribution, strictly $\alpha$-stable distribution, asymmetric stable law, Cram\'er transform, Legendre--Fenchel transform, Poisson spectral measure, conjugate distribution.
Language: Russian
Citation: A. V. Nagaev, “Asymptotic properties of multidimensional stable densities and asymmetric problems of large deviations”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 691–711; Theory Probab. Appl., 51:4 (2007), 626–644
Citation in format AMSBIB
\Bibitem{Nag06}
\by A.~V.~Nagaev
\paper Asymptotic properties of multidimensional stable densities and asymmetric problems of large deviations
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 4
\pages 691--711
\mathnet{http://mi.mathnet.ru/tvp20}
\crossref{https://doi.org/10.4213/tvp20}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338062}
\zmath{https://zbmath.org/?q=an:1132.60014}
\elib{https://elibrary.ru/item.asp?id=9310057}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 4
\pages 626--644
\crossref{https://doi.org/10.1137/S0040585X97982669}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251875600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38149032506}
Linking options:
  • https://www.mathnet.ru/eng/tvp20
  • https://doi.org/10.4213/tvp20
  • https://www.mathnet.ru/eng/tvp/v51/i4/p691
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024