Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 2, Pages 242–261
DOI: https://doi.org/10.4213/tmf9923
(Mi tmf9923)
 

This article is cited in 15 scientific papers (total in 15 papers)

Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line

A. V. Ivanova, N. V. Kharukb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
References:
Abstract: This paper is devoted to the proper-time method and describes a model case that reflects the subtleties of constructing the heat kernel, is easily extended to more general cases (curved space, manifold with a boundary), and contains two interrelated parts: an asymptotic expansion and a path integral representation. We discuss the significance of gauge conditions and the role of ordered exponentials in detail, derive a new nonrecursive formula for the Seeley–DeWitt coefficients on the diagonal, and show the equivalence of two main approaches using the exponential formula.
Keywords: path integral, Wilson line, ordered exponential, Fock–Schwinger gauge, Laplace operator, heat kernel, Seeley–DeWitt coefficient, proper time method.
Funding agency Grant number
Russian Science Foundation 18-11-00297
Contest «Young Russian Mathematics»
This research was supported by a grant from the Russian Science Foundation (Project No. 18-11-00297). A. V. Ivanov is a winner of the Young Russian Mathematician award and thanks its sponsors and jury.
Received: 20.04.2020
Revised: 20.04.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 2, Pages 1456–1472
DOI: https://doi.org/10.1134/S0040577920110057
Bibliographic databases:
Document Type: Article
PACS: 11.10.Jj
MSC: 35K08
Language: Russian
Citation: A. V. Ivanov, N. V. Kharuk, “Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line”, TMF, 205:2 (2020), 242–261; Theoret. and Math. Phys., 205:2 (2020), 1456–1472
Citation in format AMSBIB
\Bibitem{IvaKha20}
\by A.~V.~Ivanov, N.~V.~Kharuk
\paper Heat kernel: Proper-time method, Fock--Schwinger gauge, path integral, and Wilson line
\jour TMF
\yr 2020
\vol 205
\issue 2
\pages 242--261
\mathnet{http://mi.mathnet.ru/tmf9923}
\crossref{https://doi.org/10.4213/tmf9923}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4036819}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1456I}
\elib{https://elibrary.ru/item.asp?id=45162477}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 2
\pages 1456--1472
\crossref{https://doi.org/10.1134/S0040577920110057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592185000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096602824}
Linking options:
  • https://www.mathnet.ru/eng/tmf9923
  • https://doi.org/10.4213/tmf9923
  • https://www.mathnet.ru/eng/tmf/v205/i2/p242
  • This publication is cited in the following 15 articles:
    1. A. V. Ivanov, N. V. Kharuk, “Three-Loop Divergences in Effective Action of 4-Dimensional Yang–Mills Theory with Cutoff Regularization: Γ24-Contribution”, J Math Sci, 2024  crossref
    2. Upalaparna Banerjee, Joydeep Chakrabortty, Kaanapuli Ramkumar, “Renormalization of scalar and fermion interacting field theory for arbitrary loop: Heat–Kernel approach”, Eur. Phys. J. Plus, 139:8 (2024)  crossref
    3. A. V. Ivanov, “Lokalnoe teplovoe yadro”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 30, Zap. nauchn. sem. POMI, 532, POMI, SPb., 2024, 136–152  mathnet
    4. A. V. Ivanov, N. V. Kharuk, “Trekhpetlevye raskhodimosti v effektivnom deistvii 4-kh mernoi teorii Yanga–Millsa s regulyarizatsiei obrezaniem: Γ24-vklad”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 29, Zap. nauchn. sem. POMI, 520, POMI, SPb., 2023, 162–188  mathnet
    5. A. V. Ivanov, N. V. Kharuk, “Ordered exponential and its features in Yang–Mills effective action”, Commun. Theor. Phys., 75:8 (2023), 085202  crossref
    6. P. V. Akacevich, A. V. Ivanov, “On two-loop effective action of 2d sigma model”, Eur. Phys. J. C, 83:7 (2023), 653  crossref
    7. N. V. Kharuk, “Zero Modes of the Laplace Operator in Two-Loop Calculations in the Yang-Mills Theory”, J Math Sci, 275:3 (2023), 370  crossref
    8. A. V. Ivanov, N. V. Kharuk, “Formula for two-loop divergent part of 4-D Yang–Mills effective action”, Eur. Phys. J. C, 82:11 (2022)  crossref
    9. A. V. Ivanov, N. V. Kharuk, “Special functions for heat kernel expansion”, Eur. Phys. J. Plus, 137:9 (2022)  crossref
    10. A. O. Barvinsky, W. Wachowski, “Heat kernel expansion for higher order minimal and nonminimal operators”, Phys. Rev. D, 105:6 (2022)  crossref
    11. N. V. Kharuk, “Nulevye mody operatora Laplasa v dvukhpetlevykh vychisleniyakh v teorii Yanga–Millsa”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 28, Zap. nauchn. sem. POMI, 509, POMI, SPb., 2021, 216–226  mathnet
    12. A. V. Ivanov, “Notes on Functional Integration”, J Math Sci, 257:4 (2021), 518  crossref  mathscinet
    13. A. V. Ivanov, N. V. Kharuk, “Quantum Equation of Motion and Two-Loop Cutoff Renormalization for 𝜙3 Model”, J Math Sci, 257:4 (2021), 526  crossref  mathscinet
    14. A V Ivanov, N V Kharuk, “Two-loop cutoff renormalization of 4-D Yang–Mills effective action”, J. Phys. G: Nucl. Part. Phys., 48:1 (2020), 015002  crossref
    15. N. V. Kharuk, “Mixed type regularizations and nonlogarithmic singularities”, J Math Sci, 264:3 (2022), 362  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :151
    References:45
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025