Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 2, Pages 242–261
DOI: https://doi.org/10.4213/tmf9923
(Mi tmf9923)
 

This article is cited in 14 scientific papers (total in 14 papers)

Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line

A. V. Ivanova, N. V. Kharukb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
References:
Abstract: This paper is devoted to the proper-time method and describes a model case that reflects the subtleties of constructing the heat kernel, is easily extended to more general cases (curved space, manifold with a boundary), and contains two interrelated parts: an asymptotic expansion and a path integral representation. We discuss the significance of gauge conditions and the role of ordered exponentials in detail, derive a new nonrecursive formula for the Seeley–DeWitt coefficients on the diagonal, and show the equivalence of two main approaches using the exponential formula.
Keywords: path integral, Wilson line, ordered exponential, Fock–Schwinger gauge, Laplace operator, heat kernel, Seeley–DeWitt coefficient, proper time method.
Funding agency Grant number
Russian Science Foundation 18-11-00297
Contest «Young Russian Mathematics»
This research was supported by a grant from the Russian Science Foundation (Project No. 18-11-00297). A. V. Ivanov is a winner of the Young Russian Mathematician award and thanks its sponsors and jury.
Received: 20.04.2020
Revised: 20.04.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 2, Pages 1456–1472
DOI: https://doi.org/10.1134/S0040577920110057
Bibliographic databases:
Document Type: Article
PACS: 11.10.Jj
MSC: 35K08
Language: Russian
Citation: A. V. Ivanov, N. V. Kharuk, “Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line”, TMF, 205:2 (2020), 242–261; Theoret. and Math. Phys., 205:2 (2020), 1456–1472
Citation in format AMSBIB
\Bibitem{IvaKha20}
\by A.~V.~Ivanov, N.~V.~Kharuk
\paper Heat kernel: Proper-time method, Fock--Schwinger gauge, path integral, and Wilson line
\jour TMF
\yr 2020
\vol 205
\issue 2
\pages 242--261
\mathnet{http://mi.mathnet.ru/tmf9923}
\crossref{https://doi.org/10.4213/tmf9923}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4036819}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1456I}
\elib{https://elibrary.ru/item.asp?id=45162477}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 2
\pages 1456--1472
\crossref{https://doi.org/10.1134/S0040577920110057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592185000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096602824}
Linking options:
  • https://www.mathnet.ru/eng/tmf9923
  • https://doi.org/10.4213/tmf9923
  • https://www.mathnet.ru/eng/tmf/v205/i2/p242
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:342
    Full-text PDF :135
    References:41
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024