Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 2, Pages 262–283
DOI: https://doi.org/10.4213/tmf9874
(Mi tmf9874)
 

This article is cited in 1 scientific paper (total in 1 paper)

Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain

A.A. Nazarov, S. A. Paston

Faculty of Physics, St. Petersburg State University, St.. Petersburg, Russia
Full-text PDF (637 kB) Citations (1)
References:
Abstract: We consider the dimer model on a hexagonal lattice. This model can be represented as a "pile of cubes in a box." The energy of a configuration is given by the volume of the pile. The partition function is computed by the classical MacMahon formula or as the determinant of the Kasteleyn matrix. We use the MacMahon formula to derive the scaling behavior of free energy in the limit as the lattice spacing goes to zero and temperature goes to infinity. We consider the case of a finite hexagonal domain, the case where one side of the hexagonal box is infinite, and the case of inhomogeneous Boltzmann weights. We obtain an asymptotic expansion of free energy, which is called finite-size corrections, and discuss the universality and physical meaning of the expansion coefficients.
Keywords: dimer, limit shape, free energy scaling, finite-size correction, scaling limit, hexagonal lattice.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00916
This research is supported by the Russian Foundation for Basic Research (Grant No. 18-01-00916).
Received: 12.01.2020
Revised: 02.03.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 2, Pages 1473–1491
DOI: https://doi.org/10.1134/S0040577920110069
Bibliographic databases:
Document Type: Article
PACS: 05.20.−y, 02.30.Mv
MSC: 82B20, 82B80
Language: Russian
Citation: A.A. Nazarov, S. A. Paston, “Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain”, TMF, 205:2 (2020), 262–283; Theoret. and Math. Phys., 205:2 (2020), 1473–1491
Citation in format AMSBIB
\Bibitem{NazPas20}
\by A.A.~Nazarov, S.~A.~Paston
\paper Finite-size correction to the~scaling of free energy in the~dimer model on a~hexagonal domain
\jour TMF
\yr 2020
\vol 205
\issue 2
\pages 262--283
\mathnet{http://mi.mathnet.ru/tmf9874}
\crossref{https://doi.org/10.4213/tmf9874}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169740}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1473N}
\elib{https://elibrary.ru/item.asp?id=46685358}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 2
\pages 1473--1491
\crossref{https://doi.org/10.1134/S0040577920110069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592185000006}
\elib{https://elibrary.ru/item.asp?id=45131040}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096532628}
Linking options:
  • https://www.mathnet.ru/eng/tmf9874
  • https://doi.org/10.4213/tmf9874
  • https://www.mathnet.ru/eng/tmf/v205/i2/p262
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :55
    References:31
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024