Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 2, Pages 222–241
DOI: https://doi.org/10.4213/tmf9945
(Mi tmf9945)
 

This article is cited in 4 scientific papers (total in 4 papers)

Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes

A. A. Belavinabc, M. Yu. Belakovskiiab

a Landau Institute for Theoretical Physics of Russian Academy of Sciences, Chernogolovka, Moscow Oblast, Russia
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Oblast, Russia
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
Full-text PDF (474 kB) Citations (4)
References:
Abstract: We consider the phenomenon of the complete coincidence of key properties of Calabi–Yau manifolds realized as hypersurfaces in two different weighted projective spaces. More precisely, the first manifold in such a pair is realized as a hypersurface in a weighted projective space, and the second is realized as a hypersurface in an orbifold of another weighted projective space. The two manifolds in each pair have the same Hodge numbers and the same geometry on the complex structure moduli space and are also associated with the same $N=2$ gauged linear sigma model. We explain these coincidences using the correspondence between Calabi–Yau manifolds and the Batyrev reflexive polyhedra.
Keywords: superstring theory, compactification on Calabi–Yau manifold, mirror symmetry.
Funding agency Grant number
Russian Science Foundation 18-12-00439
This research was supported by a grant from the Russian Science Foundation (Project No. 18-12-00439).
Received: 05.06.2020
Revised: 25.06.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 2, Pages 1439–1455
DOI: https://doi.org/10.1134/S0040577920110045
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Belavin, M. Yu. Belakovskii, “Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes”, TMF, 205:2 (2020), 222–241; Theoret. and Math. Phys., 205:2 (2020), 1439–1455
Citation in format AMSBIB
\Bibitem{BelBel20}
\by A.~A.~Belavin, M.~Yu.~Belakovskii
\paper Coincidences between Calabi--Yau manifolds of Berglund--H\"ubsch type and Batyrev polytopes
\jour TMF
\yr 2020
\vol 205
\issue 2
\pages 222--241
\mathnet{http://mi.mathnet.ru/tmf9945}
\crossref{https://doi.org/10.4213/tmf9945}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169738}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1439B}
\elib{https://elibrary.ru/item.asp?id=45165055}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 2
\pages 1439--1455
\crossref{https://doi.org/10.1134/S0040577920110045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592185000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096551554}
Linking options:
  • https://www.mathnet.ru/eng/tmf9945
  • https://doi.org/10.4213/tmf9945
  • https://www.mathnet.ru/eng/tmf/v205/i2/p222
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :77
    References:36
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024