Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 382–392
DOI: https://doi.org/10.4213/tmf9814
(Mi tmf9814)
 

This article is cited in 5 scientific papers (total in 5 papers)

Primitive solutions of the Korteweg–de Vries equation

S. A. Dyachenkoa, P. Nabelekb, D. V. Zakharovc, V. E. Zakharovde

a Department of Mathematics, University of Washington, Seattle, Washington, USA
b Department of Mathematics, Oregon State University, Corvallis, Oregon, USA
c Department of Mathematics, Central Michigan University, Mount Pleasant, Michigan, USA
d Department of Mathematics, University of Arizona, Tucson, Arizona, USA
e Skolkovo Institute of Science and Technology, Skolkovo, Moscow Oblast, Russia
Full-text PDF (839 kB) Citations (5)
References:
Abstract: We survey recent results connected with constructing a new family of solutions of the Korteweg–de Vries equation, which we call primitive solutions. These solutions are constructed as limits of rapidly vanishing solutions of the Korteweg–de Vries equation as the number of solitons tends to infinity. A primitive solution is determined nonuniquely by a pair of positive functions on an interval on the imaginary axis and a function on the real axis determining the reflection coefficient. We show that elliptic one-gap solutions and, more generally, periodic finite-gap solutions are special cases of reflectionless primitive solutions.
Keywords: integrable system, Korteweg–de Vries equation, primitive solution.
Funding agency Grant number
National Science Foundation DMS-1716822
DMS-1715323
Russian Science Foundation 19-72-30028
The research of S. A. Dyachenko and D. V. Zakharov was supported by the National Science Foundation (Grant No. DMS-1716822).
The research of V. E. Zakharov was supported by the National Science Foundation (Grant No. DMS-1715323).
The results in Secs. 3–5 were obtained with support of a grant from the Russian Science Foundation (Project No. 19-72-30028).
Received: 08.09.2019
Revised: 08.09.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 334–343
DOI: https://doi.org/10.1134/S0040577920030058
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. A. Dyachenko, P. Nabelek, D. V. Zakharov, V. E. Zakharov, “Primitive solutions of the Korteweg–de Vries equation”, TMF, 202:3 (2020), 382–392; Theoret. and Math. Phys., 202:3 (2020), 334–343
Citation in format AMSBIB
\Bibitem{DyaNabZak20}
\by S.~A.~Dyachenko, P.~Nabelek, D.~V.~Zakharov, V.~E.~Zakharov
\paper Primitive solutions of the~Korteweg--de~Vries equation
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 382--392
\mathnet{http://mi.mathnet.ru/tmf9814}
\crossref{https://doi.org/10.4213/tmf9814}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070088}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..334D}
\elib{https://elibrary.ru/item.asp?id=43276541}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 334--343
\crossref{https://doi.org/10.1134/S0040577920030058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083276610}
Linking options:
  • https://www.mathnet.ru/eng/tmf9814
  • https://doi.org/10.4213/tmf9814
  • https://www.mathnet.ru/eng/tmf/v202/i3/p382
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :147
    References:59
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024