Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 393–402
DOI: https://doi.org/10.4213/tmf9783
(Mi tmf9783)
 

This article is cited in 1 scientific paper (total in 1 paper)

A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary

E. N. Zhuravlevaab, N. M. Zubarevcd, O. V. Zubarevac, E. A. Karabutab

a Lavrentiev Institute for Hydrodynamics, Siberian Branch of RAS, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Institute for Electrophysics, Ural Branch of RAS, Yekaterinburg, Russia
d Lebedev Physical Institute, RAS, Moscow, Russia
Full-text PDF (387 kB) Citations (1)
References:
Abstract: We consider the classical problem of potential unsteady flow of an ideal incompressible fluid with a free boundary. It was previously discovered that in the absence of external forces and capillarity, a wide class of exact solutions of the problem can be described by the Hopf equation for a complex velocity. We here obtain a new class of solutions described by the Hopf equation for a quantity that is the inverse of the complex velocity. These solutions describe the evolution of two-dimensional perturbations of the free boundary in compression or expansion of a circular cavity (in the unperturbed state) in the fluid.
Keywords: ideal incompressible fluid, unsteady planar flow with a free boundary, exact solution, complex velocity, Hopf equation.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00096
19-08-00098
Russian Academy of Sciences - Federal Agency for Scientific Organizations 2
Ural Branch of the Russian Academy of Sciences 18-2-2-15
This research is supported in part by the Russian Foundation for Basic Research (Grant Nos. 19-01-00096 and 19-08-00098), the Presidium of the Russian Academy of Sciences (Program 2), and the Ural Branch of the Russian Academy of Sciences (Project No. 18-2-2-15).
Received: 26.07.2019
Revised: 26.07.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 344–351
DOI: https://doi.org/10.1134/S0040577920030095
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. N. Zhuravleva, N. M. Zubarev, O. V. Zubareva, E. A. Karabut, “A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary”, TMF, 202:3 (2020), 393–402; Theoret. and Math. Phys., 202:3 (2020), 344–351
Citation in format AMSBIB
\Bibitem{ZhuZubZub20}
\by E.~N.~Zhuravleva, N.~M.~Zubarev, O.~V.~Zubareva, E.~A.~Karabut
\paper A~new class of exact solutions in the~planar nonstationary problem of motion of a~fluid with a~free boundary
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 393--402
\mathnet{http://mi.mathnet.ru/tmf9783}
\crossref{https://doi.org/10.4213/tmf9783}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070089}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..371K}
\elib{https://elibrary.ru/item.asp?id=43263296}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 344--351
\crossref{https://doi.org/10.1134/S0040577920030095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083062340}
Linking options:
  • https://www.mathnet.ru/eng/tmf9783
  • https://doi.org/10.4213/tmf9783
  • https://www.mathnet.ru/eng/tmf/v202/i3/p393
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024