Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 393–402
DOI: https://doi.org/10.4213/tmf9783
(Mi tmf9783)
 

This article is cited in 1 scientific paper (total in 1 paper)

A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary

E. N. Zhuravlevaab, N. M. Zubarevcd, O. V. Zubarevac, E. A. Karabutab

a Lavrentiev Institute for Hydrodynamics, Siberian Branch of RAS, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Institute for Electrophysics, Ural Branch of RAS, Yekaterinburg, Russia
d Lebedev Physical Institute, RAS, Moscow, Russia
Full-text PDF (387 kB) Citations (1)
References:
Abstract: We consider the classical problem of potential unsteady flow of an ideal incompressible fluid with a free boundary. It was previously discovered that in the absence of external forces and capillarity, a wide class of exact solutions of the problem can be described by the Hopf equation for a complex velocity. We here obtain a new class of solutions described by the Hopf equation for a quantity that is the inverse of the complex velocity. These solutions describe the evolution of two-dimensional perturbations of the free boundary in compression or expansion of a circular cavity (in the unperturbed state) in the fluid.
Keywords: ideal incompressible fluid, unsteady planar flow with a free boundary, exact solution, complex velocity, Hopf equation.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00096
19-08-00098
Russian Academy of Sciences - Federal Agency for Scientific Organizations 2
Ural Branch of the Russian Academy of Sciences 18-2-2-15
This research is supported in part by the Russian Foundation for Basic Research (Grant Nos. 19-01-00096 and 19-08-00098), the Presidium of the Russian Academy of Sciences (Program 2), and the Ural Branch of the Russian Academy of Sciences (Project No. 18-2-2-15).
Received: 26.07.2019
Revised: 26.07.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 344–351
DOI: https://doi.org/10.1134/S0040577920030095
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. N. Zhuravleva, N. M. Zubarev, O. V. Zubareva, E. A. Karabut, “A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary”, TMF, 202:3 (2020), 393–402; Theoret. and Math. Phys., 202:3 (2020), 344–351
Citation in format AMSBIB
\Bibitem{ZhuZubZub20}
\by E.~N.~Zhuravleva, N.~M.~Zubarev, O.~V.~Zubareva, E.~A.~Karabut
\paper A~new class of exact solutions in the~planar nonstationary problem of motion of a~fluid with a~free boundary
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 393--402
\mathnet{http://mi.mathnet.ru/tmf9783}
\crossref{https://doi.org/10.4213/tmf9783}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070089}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..371K}
\elib{https://elibrary.ru/item.asp?id=43263296}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 344--351
\crossref{https://doi.org/10.1134/S0040577920030095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083062340}
Linking options:
  • https://www.mathnet.ru/eng/tmf9783
  • https://doi.org/10.4213/tmf9783
  • https://www.mathnet.ru/eng/tmf/v202/i3/p393
  • This publication is cited in the following 1 articles:
    1. T. Krasnoslobodzeva, M. Skvortsova, “Long wave dynamics in heavy wave gravitating fluid in Vlasov type model”, Networked Control Systems for Connected and Automated Vehicles, Lecture Notes in Networks and Systems, 510, 2023, 975  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :65
    References:50
    First page:10
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025