Abstract:
We study long nonlinear longitudinal bulk strain waves in a hyperelastic rod of circular cross section in the framework of general weakly nonlinear elasticity leading to a model with quadratic and cubic nonlinearities. We systematically derive extended equations of the Boussinesq and Korteweg–de Vries types and construct a family of approximate weakly nonlinear soliton solutions using near-identity transformations. We compare these solutions with the results of direct numerical simulations of the original nonlinear problem formulation, showing excellent agreement in the range of their asymptotic validity (waves of small amplitude) and extending their relevance beyond it (to waves of moderate amplitude) as a very good initial condition. In particular, we can observe a stably propagating “table-top” soliton.
Citation:
F. E. Garbuzov, Y. M. Beltukov, K. R. Khusnutdinova, “Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities”, TMF, 202:3 (2020), 364–381; Theoret. and Math. Phys., 202:3 (2020), 319–333
\Bibitem{GarBelKhu20}
\by F.~E.~Garbuzov, Y.~M.~Beltukov, K.~R.~Khusnutdinova
\paper Longitudinal bulk strain solitons in a~hyperelastic rod with quadratic and cubic nonlinearities
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 364--381
\mathnet{http://mi.mathnet.ru/tmf9803}
\crossref{https://doi.org/10.4213/tmf9803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070087}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..319G}
\elib{https://elibrary.ru/item.asp?id=43270721}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 319--333
\crossref{https://doi.org/10.1134/S0040577920030046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083061616}
Linking options:
https://www.mathnet.ru/eng/tmf9803
https://doi.org/10.4213/tmf9803
https://www.mathnet.ru/eng/tmf/v202/i3/p364
This publication is cited in the following 11 articles:
F.E. Garbuzov, Y.M. Beltukov, “Slowly decaying strain solitons in nonlinear viscoelastic waveguides”, International Journal of Non-Linear Mechanics, 2025, 105043
Nerijus Sidorovas, Dmitri Tseluiko, Wooyoung Choi, Karima Khusnutdinova, “Nonlinear concentric water waves of moderate amplitude”, Wave Motion, 128 (2024), 103295
Andrea Nobili, “A weakly nonlinear Love hypothesis for longitudinal waves in elastic rods”, International Journal of Non-Linear Mechanics, 163 (2024), 104737
L. Ostrovsky, E. Pelinovsky, V. Shrira, Y. Stepanyants, “Localized wave structures: Solitons and beyond”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:6 (2024)
F. E. Garbuzov, Y. M. Beltukov, “Viscoelastic relaxation of nonlinear strain waves in polymeric bars”, International conference of numerical analysis and applied mathematics ICNAAM 2021, AIP Conf. Proc., 2849, no. 1, 2023, 450024
C. G. Hooper, K. R. Khusnutdinova, J. M. Huntley, P. D. Ruiz, “Theoretical estimates of the parameters of longitudinal undular bores in polymethylmethacrylate bars based on their measured initial speeds”, Proc. R. Soc. A, 478:2266 (2022)
A. A. Zhikhoreva, A. V. Belashov, I. V. Semenova, Y. M. Beltukov, Ch. Zhou, L. Cao, T.-C. Poon, H. Yoshikawa, “Analysis of longitudinal strain wave evolution in polystyrene waveguides using digital holography and spectral decomposition”, Holography, Diffractive Optics, and Applications XII, 2022, 94
K. R. Khusnutdinova, M. R. Tranter, “Periodic solutions of coupled Boussinesq equations and Ostrovsky-type models free from zero-mass contradiction”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:11 (2022)
C. G. Hooper, P. D. Ruiz, J. M. Huntley, K. R. Khusnutdinova, “Undular bores generated by fracture”, Phys. Rev. E, 104:4 (2021), 044207
A. V. Belashov, A. A. Zhikhoreva, Ya. M. Beltukov, I. V. Semenova, “Combined data from digital and classical holographic recording provides insight on early stages of strain soliton formation”, Optical Measurement Systems For Industrial Inspection XII, Proceedings of Spie, 11782, eds. P. Lehmann, W. Osten, A. Goncalves, Spie-Int Soc Optical Engineering, 2021, 117821Q
F. E. Garbuzov, I. V. Semenova, A. V. Belashov, Y. M. Beltukov, 2021 Days on Diffraction (DD), 2021, 58