Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 364–381
DOI: https://doi.org/10.4213/tmf9803
(Mi tmf9803)
 

This article is cited in 10 scientific papers (total in 10 papers)

Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities

F. E. Garbuzova, Y. M. Beltukova, K. R. Khusnutdinovab

a Ioffe Institute, St. Petersburg, Russia
b Department of Mathematical Sciences, Loughborough University, Loughborough, United Kingdom
References:
Abstract: We study long nonlinear longitudinal bulk strain waves in a hyperelastic rod of circular cross section in the framework of general weakly nonlinear elasticity leading to a model with quadratic and cubic nonlinearities. We systematically derive extended equations of the Boussinesq and Korteweg–de Vries types and construct a family of approximate weakly nonlinear soliton solutions using near-identity transformations. We compare these solutions with the results of direct numerical simulations of the original nonlinear problem formulation, showing excellent agreement in the range of their asymptotic validity (waves of small amplitude) and extending their relevance beyond it (to waves of moderate amplitude) as a very good initial condition. In particular, we can observe a stably propagating “table-top” soliton.
Keywords: hyperelastic rod, Korteweg–de Vries-type equation, near-identity transformation, soliton.
Funding agency Grant number
Russian Science Foundation 17-72-20201
The research of F. E. Garbuzov and Y. M. Beltukov was supported by a grant from the Russian Science Foundation (Project No. 17-72-20201).
Received: 30.08.2019
Revised: 30.08.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 319–333
DOI: https://doi.org/10.1134/S0040577920030046
Bibliographic databases:
Document Type: Article
PACS: 62.30, 43.25
MSC: 35Q51, 35Q53
Language: Russian
Citation: F. E. Garbuzov, Y. M. Beltukov, K. R. Khusnutdinova, “Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and cubic nonlinearities”, TMF, 202:3 (2020), 364–381; Theoret. and Math. Phys., 202:3 (2020), 319–333
Citation in format AMSBIB
\Bibitem{GarBelKhu20}
\by F.~E.~Garbuzov, Y.~M.~Beltukov, K.~R.~Khusnutdinova
\paper Longitudinal bulk strain solitons in a~hyperelastic rod with quadratic and cubic nonlinearities
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 364--381
\mathnet{http://mi.mathnet.ru/tmf9803}
\crossref{https://doi.org/10.4213/tmf9803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070087}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..319G}
\elib{https://elibrary.ru/item.asp?id=43270721}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 319--333
\crossref{https://doi.org/10.1134/S0040577920030046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083061616}
Linking options:
  • https://www.mathnet.ru/eng/tmf9803
  • https://doi.org/10.4213/tmf9803
  • https://www.mathnet.ru/eng/tmf/v202/i3/p364
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024