Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 353–363
DOI: https://doi.org/10.4213/tmf9801
(Mi tmf9801)
 

This article is cited in 9 scientific papers (total in 9 papers)

The Phillips spectrum and a model of wind-wave dissipation

S. I. Badulinab, V. E. Zakharovbc

a Shirshov Institute of Oceanology of the Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology, Skolkovo, Moscow Oblast, Russia
c University of Arizona, Tucson, Arizona, USA
Full-text PDF (488 kB) Citations (9)
References:
Abstract: We consider an extension of the kinetic equation developed by Newell and Zakharov in 2008. The new equation takes not only the resonant four-wave interactions but also the dissipation associated with the wave breaking into account. In the equation, we introduce a dissipation function that depends on the spectral energy flux. This function is determined up to a functional parameter, which should be optimally chosen based on a comparison with experiment. A kinetic equation with this dissipation function describes the usually experimentally observed transition from the Kolmogorov–Zakharov spectrum $E(\omega)\sim\omega^{-4}$ to the Phillips spectrum $E(\omega)\sim \omega^{-5}$. The version of the dissipation function expressed in terms of the energy spectrum can be used in problems of numerically modeling and predicting sea waves.
Keywords: Phillips spectrum, kinetic (Hasselmann) equation for water waves, Kolmogorov–Zakharov spectrum.
Funding agency Grant number
Russian Science Foundation 19-72-30028
This research was supported by a grant from the Russian Science Foundation (Project No. 19-72-30028) with a contribution from the MIGO GROUP (http://migogroup.ru).
Received: 29.08.2019
Revised: 29.08.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 309–318
DOI: https://doi.org/10.1134/S0040577920030034
Bibliographic databases:
Document Type: Article
PACS: 47.35.Bb; 47.85.Np; 92.10.Hm
MSC: 82D15; 86A05
Language: Russian
Citation: S. I. Badulin, V. E. Zakharov, “The Phillips spectrum and a model of wind-wave dissipation”, TMF, 202:3 (2020), 353–363; Theoret. and Math. Phys., 202:3 (2020), 309–318
Citation in format AMSBIB
\Bibitem{BadZak20}
\by S.~I.~Badulin, V.~E.~Zakharov
\paper The~Phillips spectrum and a~model of wind-wave dissipation
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 353--363
\mathnet{http://mi.mathnet.ru/tmf9801}
\crossref{https://doi.org/10.4213/tmf9801}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070086}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..309B}
\elib{https://elibrary.ru/item.asp?id=43271502}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 309--318
\crossref{https://doi.org/10.1134/S0040577920030034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083276610}
Linking options:
  • https://www.mathnet.ru/eng/tmf9801
  • https://doi.org/10.4213/tmf9801
  • https://www.mathnet.ru/eng/tmf/v202/i3/p353
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :101
    References:35
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024