Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 339–352
DOI: https://doi.org/10.4213/tmf9802
(Mi tmf9802)
 

Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters

Yu. Yu. Bagderina

Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of Russian Academy of Science, Ufa, Russia
References:
Abstract: We consider the problem of the equivalence of scalar second-order ordinary differential equations under invertible point transformations. To solve this problem in the case of Painlevé equations, we use previously constructed invariants of a family of equations whose right-hand sides have a cubic nonlinearity in the first derivative. We obtain the conditions for point equivalence to the fifth Painlevé equation if two or three of its parameters are equal to zero.
Keywords: Painlevé equation, equivalence, invariant.
Received: 30.08.2019
Revised: 27.09.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 295–308
DOI: https://doi.org/10.1134/S0040577920030022
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. Yu. Bagderina, “Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters”, TMF, 202:3 (2020), 339–352; Theoret. and Math. Phys., 202:3 (2020), 295–308
Citation in format AMSBIB
\Bibitem{Bag20}
\by Yu.~Yu.~Bagderina
\paper Point equivalence of second-order ordinary differential equations to the~fifth Painlev\'e equation with one and two nonzero parameters
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 339--352
\mathnet{http://mi.mathnet.ru/tmf9802}
\crossref{https://doi.org/10.4213/tmf9802}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070085}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..295B}
\elib{https://elibrary.ru/item.asp?id=43270773}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 295--308
\crossref{https://doi.org/10.1134/S0040577920030022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083068756}
Linking options:
  • https://www.mathnet.ru/eng/tmf9802
  • https://doi.org/10.4213/tmf9802
  • https://www.mathnet.ru/eng/tmf/v202/i3/p339
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :53
    References:33
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024