Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 327–338
DOI: https://doi.org/10.4213/tmf9811
(Mi tmf9811)
 

This article is cited in 4 scientific papers (total in 4 papers)

Integration of a deep fluid equation with a free surface

V. E. Zakharovabc

a Shirshov Institute of Oceanology of the Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology, Skolkovo, Moscow Oblast, Russia
c University of Arizona, Tucson, Arizona, USA
Full-text PDF (458 kB) Citations (4)
References:
Abstract: We show that the Euler equations describing the unsteady potential flow of a two-dimensional deep fluid with a free surface in the absence of gravity and surface tension can be integrated exactly under a special choice of boundary conditions at infinity. We assume that the fluid surface at infinity is unperturbed, while the velocity increase is proportional to distance and inversely proportional to time. This means that the fluid is compressed according to a self-similar law. We consider perturbations of a self-similarly compressible fluid and show that their evolution can be accurately described analytically after a conformal map of the fluid surface to the lower half-plane and the introduction of two arbitrary functions analytic in this half-plane. If one of these functions is equal to zero, then the solution can be written explicitly. In the general case, the solution appears to be a rapidly converging series whose terms can be calculated using recurrence relations.
Keywords: integrability, conformal transformation, drop, bubble, singularity.
Funding agency Grant number
Russian Science Foundation 19-72-30028
This research was supported by a grant from the Russian Science Foundation (Project No. 19-72-30028).
Received: 04.09.2019
Revised: 04.09.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 285–294
DOI: https://doi.org/10.1134/S0040577920030010
Bibliographic databases:
Document Type: Article
PACS: 02.30.−f
MSC: 30C20
Language: Russian
Citation: V. E. Zakharov, “Integration of a deep fluid equation with a free surface”, TMF, 202:3 (2020), 327–338; Theoret. and Math. Phys., 202:3 (2020), 285–294
Citation in format AMSBIB
\Bibitem{Zak20}
\by V.~E.~Zakharov
\paper Integration of a~deep fluid equation with a~free surface
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 327--338
\mathnet{http://mi.mathnet.ru/tmf9811}
\crossref{https://doi.org/10.4213/tmf9811}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070084}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..285Z}
\elib{https://elibrary.ru/item.asp?id=43264477}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 285--294
\crossref{https://doi.org/10.1134/S0040577920030010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083276610}
Linking options:
  • https://www.mathnet.ru/eng/tmf9811
  • https://doi.org/10.4213/tmf9811
  • https://www.mathnet.ru/eng/tmf/v202/i3/p327
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:476
    Full-text PDF :107
    References:66
    First page:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024