|
This article is cited in 2 scientific papers (total in 2 papers)
Rings of $\mathbf h$-deformed differential operators
O. V. Ogievetskiiab, B. Herlemontb a Kazan Federal University, Kazan, Russia
b Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
Abstract:
We describe the center of the ring $\operatorname{Diff}_{\mathbf{h}}(n)$ $\mathbf{h}$-deformed differential operators of type A. We establish an isomorphism between certain localizations of $\operatorname{Diff}_{\mathbf{h}}(n)$ and the Weyl algebra $\mathrm{W}_n$, extended by $n$ indeterminates.
Keywords:
reduction algebra, oscillatory realization, ring of differential operators, Gelfand–Kirillov conjecture, dynamical Yang–Baxter equation.
Received: 24.12.2016 Revised: 22.02.2017
Citation:
O. V. Ogievetskii, B. Herlemont, “Rings of $\mathbf h$-deformed differential operators”, TMF, 192:2 (2017), 322–334; Theoret. and Math. Phys., 192:2 (2017), 1218–1229
Linking options:
https://www.mathnet.ru/eng/tmf9328https://doi.org/10.4213/tmf9328 https://www.mathnet.ru/eng/tmf/v192/i2/p322
|
Statistics & downloads: |
Abstract page: | 1523 | Full-text PDF : | 106 | References: | 57 | First page: | 17 |
|