Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 2, Pages 335–347
DOI: https://doi.org/10.4213/tmf9297
(Mi tmf9297)
 

This article is cited in 1 scientific paper (total in 1 paper)

A new generalized Wick theorem in conformal field theory

T. Takagi

Department of Applied Physics, National Defense Academy, Kanagawa, Japan
Full-text PDF (374 kB) Citations (1)
References:
Abstract: We describe a new generalized Wick theorem for interacting fields in two-dimensional conformal field theory and briefly discuss its relation to the Borcherds identity and its derivation by an analytic method. We give examples of calculating operator product expansions using the generalized Wick theorem including fermionic fields.
Keywords: operator product expansion, vertex algebra, Borcherds identity, fermionic field.
Funding agency Grant number
Japan Society for the Promotion of Science KAKENHI JP25400122)
This research was supported by the Japan Society for the Promotion of Science (KAKENHI Grant No. JP25400122).
Received: 25.10.2016
Revised: 17.01.2017
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 2, Pages 1230–1241
DOI: https://doi.org/10.1134/S0040577917080116
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. Takagi, “A new generalized Wick theorem in conformal field theory”, TMF, 192:2 (2017), 335–347; Theoret. and Math. Phys., 192:2 (2017), 1230–1241
Citation in format AMSBIB
\Bibitem{Tak17}
\by T.~Takagi
\paper A~new generalized Wick theorem in conformal field theory
\jour TMF
\yr 2017
\vol 192
\issue 2
\pages 335--347
\mathnet{http://mi.mathnet.ru/tmf9297}
\crossref{https://doi.org/10.4213/tmf9297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3682819}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1230T}
\elib{https://elibrary.ru/item.asp?id=29833745}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 2
\pages 1230--1241
\crossref{https://doi.org/10.1134/S0040577917080116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409295000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029001402}
Linking options:
  • https://www.mathnet.ru/eng/tmf9297
  • https://doi.org/10.4213/tmf9297
  • https://www.mathnet.ru/eng/tmf/v192/i2/p335
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :119
    References:56
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024