|
Regularization of Mickelsson generators for nonexceptional quantum groups
A. I. Mudrov Mathematics Department, University of Leicester, United Kingdom
Abstract:
Let $\mathfrak{g}'\subset\mathfrak{g}$ be a pair of Lie algebras of either symplectic or orthogonal infinitesimal endomorphisms of the complex vector spaces $\mathbb C^{N-2}\subset\mathbb C^N$ and $U_q(\mathfrak{g}')\subset U_q(\mathfrak{g})$ be a pair of quantum groups with a triangular decomposition $U_q(\mathfrak{g})=U_q(\mathfrak{g}_-)U_q(\mathfrak{g}_+) U_q(\mathfrak{h})$. Let $Z_q(\mathfrak{g},\mathfrak{g}')$ be the corresponding step algebra. We assume that its generators are rational trigonometric functions $\mathfrak{h}^*\to U_q(\mathfrak{g}_\pm)$. We describe their regularization such that the resulting generators do not vanish for any choice of the weight.
Keywords:
Mickelson algebra, quantum group, regularization.
Received: 30.10.2016
Citation:
A. I. Mudrov, “Regularization of Mickelsson generators for nonexceptional quantum groups”, TMF, 192:2 (2017), 307–321; Theoret. and Math. Phys., 192:2 (2017), 1205–1217
Linking options:
https://www.mathnet.ru/eng/tmf9299https://doi.org/10.4213/tmf9299 https://www.mathnet.ru/eng/tmf/v192/i2/p307
|
Statistics & downloads: |
Abstract page: | 275 | Full-text PDF : | 91 | References: | 39 | First page: | 18 |
|