Abstract:
We propose a method for determining asymptotic solutions of stationary problems for pencils of differential (and pseudodifferential) operators whose symbol is a self-adjoint matrix. We show that in the case of constant multiplicity, the problem of constructing asymptotic solutions corresponding to a distinguished eigenvalue (called an effective Hamiltonian, term, or mode) reduces to studying objects related only to the determinant of the principal matrix symbol and the eigenvector corresponding to a given (numerical) value of this effective Hamiltonian. As an example, we show that stationary solutions can be effectively calculated in the problem of plasma motion in a tokamak.
Citation:
A. Yu. Anikin, S. Yu. Dobrokhotov, A. I. Klevin, B. Tirozzi, “Scalarization of stationary semiclassical problems for systems of equations and its application in plasma physics”, TMF, 193:3 (2017), 409–433; Theoret. and Math. Phys., 193:3 (2017), 1761–1782