Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 193, Number 3, Pages 434–454
DOI: https://doi.org/10.4213/tmf9217
(Mi tmf9217)
 

This article is cited in 15 scientific papers (total in 15 papers)

Rogue-wave solutions of the Zakharov equation

Jiguang Raoa, Lihong Wangb, Wei Liuc, Jingsong Hea

a Mathematics Department, Faculty of Science, Ningbo University, Ningbo, China
b Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, China
c School of Mathematical Sciences, University of Science and Technology of China, Hefei, China
References:
Abstract: Using the bilinear transformation method, we derive general rogue-wave solutions of the Zakharov equation. We present these $N$th-order rogue-wave solutions explicitly in terms of $N$th-order determinants whose matrix elements have simple expressions. We show that the fundamental rogue wave is a line rogue wave with a line profile on the plane $(x,y)$ arising from a constant background at $t\ll0$ and then gradually tending to the constant background for $t\gg0$. Higher-order rogue waves arising from a constant background and later disappearing into it describe the interaction of several fundamental line rogue waves. We also consider different structures of higher-order rogue waves. We present differences between rogue waves of the Zakharov equation and of the first type of the Davey–Stewartson equation analytically and graphically.
Keywords: Zakharov equation, bilinear transformation method, rogue wave.
Funding agency Grant number
National Natural Science Foundation of China 11671219
11271210
K. C. Wong Magna Fund (Ningbo University)
This research is supported by the NSF of China (Grant Nos. 11671219 and 11271210) and the K. C. Wong Magna Fund in Ningbo University.
Received: 27.04.2016
Revised: 24.10.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 193, Issue 3, Pages 1783–1800
DOI: https://doi.org/10.1134/S0040577917120054
Bibliographic databases:
Document Type: Article
PACS: 02.30.Ik, 05.45.Yv, 42.65.Tg
Language: Russian
Citation: Jiguang Rao, Lihong Wang, Wei Liu, Jingsong He, “Rogue-wave solutions of the Zakharov equation”, TMF, 193:3 (2017), 434–454; Theoret. and Math. Phys., 193:3 (2017), 1783–1800
Citation in format AMSBIB
\Bibitem{RaoWanLiu17}
\by Jiguang~Rao, Lihong~Wang, Wei~Liu, Jingsong~He
\paper Rogue-wave solutions of the~Zakharov equation
\jour TMF
\yr 2017
\vol 193
\issue 3
\pages 434--454
\mathnet{http://mi.mathnet.ru/tmf9217}
\crossref{https://doi.org/10.4213/tmf9217}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...193.1783R}
\elib{https://elibrary.ru/item.asp?id=30738041}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 193
\issue 3
\pages 1783--1800
\crossref{https://doi.org/10.1134/S0040577917120054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000419257900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040186388}
Linking options:
  • https://www.mathnet.ru/eng/tmf9217
  • https://doi.org/10.4213/tmf9217
  • https://www.mathnet.ru/eng/tmf/v193/i3/p434
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:422
    Full-text PDF :106
    References:54
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024