Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 193, Number 3, Pages 401–408
DOI: https://doi.org/10.4213/tmf9382
(Mi tmf9382)
 

This article is cited in 6 scientific papers (total in 6 papers)

Symmetries and apparent singularities for the simplest Fuchsian equations

S. Yu. Slavyanov

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (365 kB) Citations (6)
References:
Abstract: We consider the simplest Fuchsian second-order equations with particular attention to the role of apparent singularities. We show the relation to the Painlevé equation and follow the matrix formulation of the problem.
Keywords: hypergeometric equation, Heun equation, deformed Heun equation, antiquantization, Painlevé equation.
Received: 14.04.2017
English version:
Theoretical and Mathematical Physics, 2017, Volume 193, Issue 3, Pages 1754–1760
DOI: https://doi.org/10.1134/S0040577917120030
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Yu. Slavyanov, “Symmetries and apparent singularities for the simplest Fuchsian equations”, TMF, 193:3 (2017), 401–408; Theoret. and Math. Phys., 193:3 (2017), 1754–1760
Citation in format AMSBIB
\Bibitem{Sla17}
\by S.~Yu.~Slavyanov
\paper Symmetries and apparent singularities for the~simplest Fuchsian equations
\jour TMF
\yr 2017
\vol 193
\issue 3
\pages 401--408
\mathnet{http://mi.mathnet.ru/tmf9382}
\crossref{https://doi.org/10.4213/tmf9382}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...193.1754S}
\elib{https://elibrary.ru/item.asp?id=30738030}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 193
\issue 3
\pages 1754--1760
\crossref{https://doi.org/10.1134/S0040577917120030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000419257900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040189811}
Linking options:
  • https://www.mathnet.ru/eng/tmf9382
  • https://doi.org/10.4213/tmf9382
  • https://www.mathnet.ru/eng/tmf/v193/i3/p401
  • This publication is cited in the following 6 articles:
    1. A. M. Ishkhanyan, “Generalized hypergeometric solutions of the Heun equation”, Theoret. and Math. Phys., 202:1 (2020), 1–10  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. S. Slavyanov, O. Stesik, “Antiquantization as a specific way from the statistical physics to the regular physics”, Physica A, 521 (2019), 512–518  crossref  mathscinet  isi  scopus
    3. M. Babich, S. Slavyanov, “Antiquantization, isomonodromy, and integrability”, J. Math. Phys., 59:9, SI (2018), 091416  crossref  mathscinet  zmath  isi  scopus
    4. M. V. Babich, S. Yu. Slavyanov, “Fuchsian Heun equation, equivalent Fuchsian linear systems and Painleve PVI equation”, 2018 Days on Diffraction (DD), eds. O. Motygin, A. Kiselev, L. Goray, A. Kazakov, A. Kirpichnikova, M. Perel, IEEE, 2018, 24–26  crossref  isi
    5. M. V. Babich, S. Yu. Slavyanov, “Links from second-order Fuchsian equations to first-order linear systems”, J. Math. Sci. (N. Y.), 240:5 (2019), 646–650  mathnet  mathnet  crossref  mathscinet  scopus
    6. S. Yu. Slavyanov, A. A. Salatich, “Confluent Heun equation and confluent hypergeometric equation”, J. Math. Sci. (N. Y.), 232:2 (2018), 157–163  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :131
    References:62
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025