Abstract:
We consider the simplest Fuchsian second-order equations with particular attention to the role of apparent singularities. We show the relation to the Painlevé equation and follow the matrix formulation of the problem.
Citation:
S. Yu. Slavyanov, “Symmetries and apparent singularities for the simplest Fuchsian equations”, TMF, 193:3 (2017), 401–408; Theoret. and Math. Phys., 193:3 (2017), 1754–1760
This publication is cited in the following 6 articles:
A. M. Ishkhanyan, “Generalized hypergeometric solutions of the Heun equation”, Theoret. and Math. Phys., 202:1 (2020), 1–10
S. Slavyanov, O. Stesik, “Antiquantization as a specific way from the statistical physics to the regular physics”, Physica A, 521 (2019), 512–518
M. Babich, S. Slavyanov, “Antiquantization, isomonodromy, and integrability”, J. Math. Phys., 59:9, SI (2018), 091416
M. V. Babich, S. Yu. Slavyanov, “Fuchsian Heun equation, equivalent Fuchsian linear systems and Painleve PVI equation”, 2018 Days on Diffraction (DD), eds. O. Motygin, A. Kiselev, L. Goray, A. Kazakov, A. Kirpichnikova, M. Perel, IEEE, 2018, 24–26
M. V. Babich, S. Yu. Slavyanov, “Links from second-order Fuchsian equations to first-order linear systems”, J. Math. Sci. (N. Y.), 240:5 (2019), 646–650
S. Yu. Slavyanov, A. A. Salatich, “Confluent Heun equation and confluent hypergeometric equation”, J. Math. Sci. (N. Y.), 232:2 (2018), 157–163