Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 1, Pages 115–163
DOI: https://doi.org/10.4213/tmf9214
(Mi tmf9214)
 

This article is cited in 2 scientific papers (total in 2 papers)

Matrix model and dimensions at hypercube vertices

A. Yu. Morozovabc, A. A. Morozovabcd, A. V. Popolitovabe

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
c National Engineering Physics Institute "MEPhI", Moscow, Russia
d Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk, Russia
e Korteweg–de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
References:
Abstract: We consider correlation functions in the Chern–Simons theory (knot polynomials) using an approach in which each knot diagram is associated with a hypercube. The number of cycles into which the link diagram is decomposed under different resolutions plays a central role. Certain functions of these numbers are further interpreted as dimensions of graded spaces associated with hypercube vertices, but finding these functions is a somewhat nontrivial problem. It was previously suggested to solve this problem using the matrix model technique by analogy with topological recursion. We develop this idea and provide a wide collection of nontrivial examples related to both ordinary and virtual knots and links. The most powerful version of the formalism freely connects ordinary knots/links with virtual ones. Moreover, it allows going beyond the limits of the knot-related set of $(2,2)$-valent graphs.
Keywords: Chern–Simons theory, knot theory, virtual knot, matrix model.
Funding agency Grant number
Russian Science Foundation 14-50-00150
This research was performed at the Institute for Information Transmission Problems and supported by a grant from the Russian Science Foundation (Project No. 14-50-00150).
Received: 23.04.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 1, Pages 1039–1079
DOI: https://doi.org/10.1134/S004057791707008X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Yu. Morozov, A. A. Morozov, A. V. Popolitov, “Matrix model and dimensions at hypercube vertices”, TMF, 192:1 (2017), 115–163; Theoret. and Math. Phys., 192:1 (2017), 1039–1079
Citation in format AMSBIB
\Bibitem{MorMorPop17}
\by A.~Yu.~Morozov, A.~A.~Morozov, A.~V.~Popolitov
\paper Matrix model and dimensions at hypercube vertices
\jour TMF
\yr 2017
\vol 192
\issue 1
\pages 115--163
\mathnet{http://mi.mathnet.ru/tmf9214}
\crossref{https://doi.org/10.4213/tmf9214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3670251}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1039M}
\elib{https://elibrary.ru/item.asp?id=29438860}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 1
\pages 1039--1079
\crossref{https://doi.org/10.1134/S004057791707008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407759300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85027407750}
Linking options:
  • https://www.mathnet.ru/eng/tmf9214
  • https://doi.org/10.4213/tmf9214
  • https://www.mathnet.ru/eng/tmf/v192/i1/p115
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:474
    Full-text PDF :131
    References:67
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024