Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 1, Pages 103–114
DOI: https://doi.org/10.4213/tmf9224
(Mi tmf9224)
 

This article is cited in 8 scientific papers (total in 8 papers)

Reanalysis of an open problem associated with the fractional Schrödinger equation

K. Sayevand, K. Pichaghchi

Faculty of Mathematical Sciences, University of Malayer, Malayer, Iran
Full-text PDF (440 kB) Citations (8)
References:
Abstract: It was recently shown that there are some difficulties in the solution method proposed by Laskin for obtaining the eigenvalues and eigenfunctions of the one-dimensional time-independent fractional Schrödinger equation with an infinite potential well encountered in quantum mechanics. In fact, this problem is still open. We propose a new fractional approach that allows overcoming the limitations of some previously introduced strategies. In deriving the solution, we use a method based on the eigenfunction of the Weyl fractional derivative. We obtain a solution suitable for computations in a closed form in terms of Mittag–Leffler functions and fractional trigonometric functions. It is a simple extension of the results previously obtained by Laskin et al.
Keywords: fractional Schrödinger equation, infinite potential well, Riesz fractional derivative, Mittag–Leffler function.
Received: 11.05.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 1, Pages 1028–1038
DOI: https://doi.org/10.1134/S0040577917070078
Bibliographic databases:
Document Type: Article
MSC: 34A08, 35J10
Language: Russian
Citation: K. Sayevand, K. Pichaghchi, “Reanalysis of an open problem associated with the fractional Schrödinger equation”, TMF, 192:1 (2017), 103–114; Theoret. and Math. Phys., 192:1 (2017), 1028–1038
Citation in format AMSBIB
\Bibitem{SayPic17}
\by K.~Sayevand, K.~Pichaghchi
\paper Reanalysis of an~open problem associated with the~fractional Schr\"odinger equation
\jour TMF
\yr 2017
\vol 192
\issue 1
\pages 103--114
\mathnet{http://mi.mathnet.ru/tmf9224}
\crossref{https://doi.org/10.4213/tmf9224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3670250}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1028S}
\elib{https://elibrary.ru/item.asp?id=29438859}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 1
\pages 1028--1038
\crossref{https://doi.org/10.1134/S0040577917070078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407759300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85027416152}
Linking options:
  • https://www.mathnet.ru/eng/tmf9224
  • https://doi.org/10.4213/tmf9224
  • https://www.mathnet.ru/eng/tmf/v192/i1/p103
  • This publication is cited in the following 8 articles:
    1. Yu. Li, “Integral representation bound of the true solution to the bvp of double-sided fractional diffusion advection reaction equation”, Rend. Circ. Mat. Palermo, 71:1 (2022), 407–428  crossref  mathscinet  isi
    2. Mostafanejad M., “Fractional Paradigms in Quantum Chemistry”, Int. J. Quantum Chem., 121:20 (2021), e26762  crossref  isi
    3. Yu. Li, “On the decomposition of solutions: from fractional diffusion to fractional Laplacian”, Fract. Calc. Appl. Anal., 24:5 (2021), 1571–1600  crossref  mathscinet  isi
    4. H. C. Rosu, S. C. Mancas, “Factorization of the Riesz-Feller fractional quantum harmonic oscillators”, Quantum Fest 2019 International Conference on Quantum Phenomena, Quantum Control and Quantum Optics, Journal of Physics Conference Series, 1540, IOP Publishing Ltd, 2020, 012005  crossref  isi
    5. Kh. Sayevand, J. A. Tenreiro Machado, “A survey on fractional asymptotic expansion method: a forgotten theory”, Fract. Calc. Appl. Anal., 22:5 (2019), 1165–1176  crossref  mathscinet  isi
    6. K. Sayevand, J. Tenreiro Machado, V. Moradi, “A new non-standard finite difference method for analyzing the fractional Navier-Stokes equations”, Comput. Math. Appl., 78:5, SI (2019), 1681–1694  crossref  mathscinet  isi
    7. Ahmad Golbabai, Omid Nikan, Touraj Nikazad, “Numerical Investigation of the Time Fractional Mobile-Immobile Advection-Dispersion Model Arising from Solute Transport in Porous Media”, Int. J. Appl. Comput. Math, 5:3 (2019)  crossref  mathscinet
    8. M. Berman, N. Moiseyev, “Exceptional points in the Riesz-Feller Hamiltonian with an impenetrable rectangular potential”, Phys. Rev. A, 98:4 (2018), 042110  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :142
    References:57
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025