Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 1, Pages 164–184
DOI: https://doi.org/10.4213/tmf9232
(Mi tmf9232)
 

This article is cited in 1 scientific paper (total in 1 paper)

Scale transformations in phase space and stretched states of a harmonic oscillator

V. A. Andreeva, D. M. Davidovićb, L. D. Davidovićc, Milena D. Davidovićd, Miloš D. Davidovićb

a Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
b Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
c Institute of Physics, University of Belgrade, Belgrade, Serbia
d Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia
Full-text PDF (455 kB) Citations (1)
References:
Abstract: We consider scale transformations $(q,p)\to(\lambda q,\lambda p)$ in phase space. They induce transformations of the Husimi functions $H(q,p)$ defined in this space. We consider the Husimi functions for states that are arbitrary superpositions of $n$-particle states of a harmonic oscillator. We develop a method that allows finding so-called stretched states to which these superpositions transform under such a scale transformation. We study the properties of the stretched states and calculate their density matrices in explicit form. We establish that the density matrix structure can be described using negative binomial distributions. We find expressions for the energy and entropy of stretched states and calculate the means of the number-of-states operator. We give the form of the Heisenberg and Robertson–Schrödinger uncertainty relations for stretched states.
Keywords: phase space, Husimi function, scale transformation, harmonic oscillator, stretched state, uncertainty relation.
Funding agency Grant number
Ministry of Education, Science and Technical Development of Serbia OI 171031
OI 171028
This research is performed within the scientific collaboration between the Russian Academy of Sciences and the Serbian Academy of Sciences and Arts on the subject "Fundamental study in the field of quantum information theory and quantum calculations and their application" and is supported by the Serbian Ministry of Education, Science, and Technological Development.
The research of L. D. Davidović is supported in part by the Serbian Ministry of Education, Science, and Technological Development (Project No. OI 171031).
The research of Milena D. Davidović and Miloš D. Davidović is supported in part by the Serbian Ministry of Education, Science, and Technological Development (Project No. OI 171028).
Received: 18.05.2016
Revised: 11.07.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 1, Pages 1080–1096
DOI: https://doi.org/10.1134/S0040577917070091
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Andreev, D. M. Davidović, L. D. Davidović, Milena D. Davidović, Miloš D. Davidović, “Scale transformations in phase space and stretched states of a harmonic oscillator”, TMF, 192:1 (2017), 164–184; Theoret. and Math. Phys., 192:1 (2017), 1080–1096
Citation in format AMSBIB
\Bibitem{AndDavDav17}
\by V.~A.~Andreev, D.~M.~Davidovi\'c, L.~D.~Davidovi\'c, Milena~D.~Davidovi\'c, Milo{\v s}~D.~Davidovi\'c
\paper Scale transformations in phase space and stretched states of a~harmonic oscillator
\jour TMF
\yr 2017
\vol 192
\issue 1
\pages 164--184
\mathnet{http://mi.mathnet.ru/tmf9232}
\crossref{https://doi.org/10.4213/tmf9232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3670252}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1080A}
\elib{https://elibrary.ru/item.asp?id=29438861}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 1
\pages 1080--1096
\crossref{https://doi.org/10.1134/S0040577917070091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407759300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85027407589}
Linking options:
  • https://www.mathnet.ru/eng/tmf9232
  • https://doi.org/10.4213/tmf9232
  • https://www.mathnet.ru/eng/tmf/v192/i1/p164
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :158
    References:77
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025