Abstract:
For a class of bipartite quantum states, we find a nontrivial lower bound on the entropy gain resulting from the action of a tensor product of the identity channel with an arbitrary channel. We use the obtained result to bound the output entropy of the tensor product of a dephasing channel with an arbitrary channel from below. We characterize phase-damping channels that are particular cases of dephasing channels.
Keywords:
quantum channel, bipartite quantum system, entanglement, von Neumann entropy.
Citation:
G. G. Amosov, “Estimating the output entropy of a tensor product of two quantum channels”, TMF, 182:3 (2015), 453–464; Theoret. and Math. Phys., 182:3 (2015), 397–406
This publication is cited in the following 8 articles:
R. N. Gumerov, R. L. Khazhin, “Generating Quantum Channels”, Proc. Steklov Inst. Math., 324 (2024), 75–85
R. N. Gumerov, R. L. Khazhin, “Generating quantum dynamic mapping”, Theoret. and Math. Phys., 221:3 (2024), 2177–2192
Milajiguli Rexiti, Laleh Memarzadeh, Stefano Mancini, “Discrimination of dephasing channels”, J. Phys. A: Math. Theor., 55:24 (2022), 245301
G. Amosov, “On classical capacity of Weyl channels”, Quantum Inf. Process., 19:11 (2020), 401
A. V. Lebedev, G. B. Lesovik, “H-theorem for systems with an interaction invariant distribution function”, Lobachevskii J. Math., 40:10, SI (2019), 1516–1520
F. Mukhamedov, N. Watanabe, “On $S$-mixing entropy of quantum channels”, Quantum Inf. Process., 17:6 (2018), UNSP 148
G. G. Amosov, “Algebraic methods of the study of quantum information transfer channels”, J. Math. Sci. (N. Y.), 241:2 (2019), 109–116