Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 182, Number 3, Pages 465–499
DOI: https://doi.org/10.4213/tmf8767
(Mi tmf8767)
 

This article is cited in 2 scientific papers (total in 2 papers)

Kato perturbative expansion in classical mechanics and an explicit expression for the Deprit generator

A. S. Nikolaevab

a Institute of Computing for Physics and Technology, Protvino, Moscow Oblast, Russia
b RDTeX LTD, Moscow, Russia
Full-text PDF (717 kB) Citations (2)
References:
Abstract: We study the structure of the canonical Poincaré–Lindstedt perturbation series in the Deprit operator formalism and establish its connection to the Kato resolvent expansion. A discussion of invariant definitions for averaging and integrating perturbation operators and their canonical identities reveals a regular pattern in the series for the Deprit generator. This regularity is explained using Kato series and the relation of the perturbation operators to the Laurent coefficients for the resolvent of the Liouville operator. This purely canonical approach systematizes the series and leads to an explicit expression for the Deprit generator in any order of the perturbation theory: $G=-\hat{\pmb{\mathsf S}}_H H_j$, where $\hat{\pmb{\mathsf S}}_H$ is the partial pseudoinverse of the perturbed Liouville operator. The corresponding Kato series provides a reasonably effective computational algorithm. The canonical connection of the perturbed and unperturbed averaging operators allows describing ambiguities in the generator and transformed Hamiltonian, while Gustavson integrals turn out to be insensitive to the normalization style. We use nonperturbative examples for illustration.
Keywords: classical perturbation theory, Lie–Deprit transform, Liouvillian, resolvent, Kato expansion.
Received: 09.07.2014
Revised: 28.08.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 182, Issue 3, Pages 407–436
DOI: https://doi.org/10.1007/s11232-015-0271-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Nikolaev, “Kato perturbative expansion in classical mechanics and an explicit expression for the Deprit generator”, TMF, 182:3 (2015), 465–499; Theoret. and Math. Phys., 182:3 (2015), 407–436
Citation in format AMSBIB
\Bibitem{Nik15}
\by A.~S.~Nikolaev
\paper Kato perturbative expansion in classical mechanics and an~explicit expression for the~Deprit generator
\jour TMF
\yr 2015
\vol 182
\issue 3
\pages 465--499
\mathnet{http://mi.mathnet.ru/tmf8767}
\crossref{https://doi.org/10.4213/tmf8767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399628}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...182..407N}
\elib{https://elibrary.ru/item.asp?id=23421729}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 182
\issue 3
\pages 407--436
\crossref{https://doi.org/10.1007/s11232-015-0271-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352624000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927145498}
Linking options:
  • https://www.mathnet.ru/eng/tmf8767
  • https://doi.org/10.4213/tmf8767
  • https://www.mathnet.ru/eng/tmf/v182/i3/p465
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:517
    Full-text PDF :257
    References:66
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024