Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 182, Number 3, Pages 435–452
DOI: https://doi.org/10.4213/tmf8764
(Mi tmf8764)
 

This article is cited in 3 scientific papers (total in 3 papers)

Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice

M. I. Muminova, N. M. Alievb

a Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
b Faculty of Mechanics and Mathematics, Samarkand State University, Samarkand, Republic Uzbekistan
Full-text PDF (474 kB) Citations (3)
References:
Abstract: We consider a system of three arbitrary quantum particles on a three-dimensional lattice interacting via attractive pair-contact potentials and attractive potentials of particles at the nearest-neighbor sites. We prove that the Hamiltonian of the corresponding three-particle system has infinitely many eigenvalues. We also list different types of attractive potentials whose eigenvalues can be to the left of the essential spectrum, in a gap in the essential spectrum, and in the essential spectrum of the considered operator.
Keywords: three-particle system on a lattice, Schrödinger operator, asymptotic number of eigenvalues, infinitely many eigenvalues in a gap in the essential spectrum, infinitely many eigenvalues in the essential spectrum.
Received: 04.07.2014
Revised: 04.09.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 182, Issue 3, Pages 381–396
DOI: https://doi.org/10.1007/s11232-015-0269-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. I. Muminov, N. M. Aliev, “Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice”, TMF, 182:3 (2015), 435–452; Theoret. and Math. Phys., 182:3 (2015), 381–396
Citation in format AMSBIB
\Bibitem{MumAli15}
\by M.~I.~Muminov, N.~M.~Aliev
\paper Discrete spectrum of a~noncompact perturbation of a~three-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2015
\vol 182
\issue 3
\pages 435--452
\mathnet{http://mi.mathnet.ru/tmf8764}
\crossref{https://doi.org/10.4213/tmf8764}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399626}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...182..381M}
\elib{https://elibrary.ru/item.asp?id=23421726}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 182
\issue 3
\pages 381--396
\crossref{https://doi.org/10.1007/s11232-015-0269-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352624000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927136305}
Linking options:
  • https://www.mathnet.ru/eng/tmf8764
  • https://doi.org/10.4213/tmf8764
  • https://www.mathnet.ru/eng/tmf/v182/i3/p435
  • This publication is cited in the following 3 articles:
    1. Z. I. Muminov, Vasila Aktamova, “The Point Spectrum of the Three-Particle Schrödinger Operator on Z with Masses m1=m2= and \boldsymbol{m_{3}<\infty}”, Lobachevskii J Math, 45:11 (2024), 5860  crossref
    2. N. M. Aliev, “Asymtotic of the Discrete Spectrum of the Three-Particle Schrödinger Operator on a One-Dimensional Lattice”, Lobachevskii J Math, 44:2 (2023), 491  crossref
    3. Sabirov O.Sh., Berdiyarov B.T., Yusupov A.Sh., Absalamov A.T., Berdibekov Adham Ilkhomjon Ugli, “Improving Ways to Increase the Attitude of the Investment Environment”, Rev. GEINTEC, 11:2 (2021), 1961–1975  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :176
    References:88
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025