Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 181, Number 2, Pages 322–336
DOI: https://doi.org/10.4213/tmf8719
(Mi tmf8719)
 

Alternative descriptions of physical systems based on perturbation theory

V. A. Franke, V. Tcendrovskii

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: In quantum physics, the perturbation theory up to some finite order in the coupling constant contains a nonpositive-definite scalar product of physical wave functions or a nonunitary evolution of states. It cannot therefore be considered a consistent theory describing reality. This problem can be solved by modifying the scalar product of wave functions and the multiplication of dynamical variables. The obtained solutions can be used for an alternative description of quantum physical systems that agrees with experiment within the prescribed accuracy.
Keywords: unitary evolution, positive probability, perturbation theory.
Received: 29.05.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 181, Issue 2, Pages 1405–1417
DOI: https://doi.org/10.1007/s11232-014-0221-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Franke, V. Tcendrovskii, “Alternative descriptions of physical systems based on perturbation theory”, TMF, 181:2 (2014), 322–336; Theoret. and Math. Phys., 181:2 (2014), 1405–1417
Citation in format AMSBIB
\Bibitem{FraTce14}
\by V.~A.~Franke, V.~Tcendrovskii
\paper Alternative descriptions of physical systems based on perturbation theory
\jour TMF
\yr 2014
\vol 181
\issue 2
\pages 322--336
\mathnet{http://mi.mathnet.ru/tmf8719}
\crossref{https://doi.org/10.4213/tmf8719}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1405F}
\elib{https://elibrary.ru/item.asp?id=22834546}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 2
\pages 1405--1417
\crossref{https://doi.org/10.1007/s11232-014-0221-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345836900006}
\elib{https://elibrary.ru/item.asp?id=24012922}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84915758777}
Linking options:
  • https://www.mathnet.ru/eng/tmf8719
  • https://doi.org/10.4213/tmf8719
  • https://www.mathnet.ru/eng/tmf/v181/i2/p322
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024